Trajectory Generation in Guided Spaces using NTG Algorithm and Artificial Neural Networks

Mehmet K. Muezzinoglu and Tamer Inanc

Electrical and Computer Engineering Department
Speed School of Engineering
University of Louisville
Louisville, KY
Problem

- Computation of **low-observable** trajectories in real-time with the NTG algorithm.
- Low-observable: Minimum **probability of detection** by radars.
- Formulated as a sequence of fixed final point problems with nonlinear dynamical constraints.
- Radars are considered as guiding the state space, rather than rigid obstacles.
- How to improve analytical expression of guidance?
Aircraft and Detection Models

[Diagram with boxes and arrows representing the flow of information from Target Waypoint, Velocity, Current Position, Heading to Aircraft Model, Aircraft Attitude, Coordinate Transform, Next Position, Radar Position, Elevation/Azimuth, Signature Lookup, Radar Signature, PD Lookup, Detection Probability, and Range.]
Problem Formulation

\[\Phi_0 = W_t T \]
\[\int_0^1 \left(\frac{W_u}{T^2} \left[\left(\frac{dn_a}{d\tau} \right)^2 + \left(\frac{de_a}{d\tau} \right)^2 \right] - W_p \cdot p n d \right) T d\tau \]

Performance Index Components

Initial Constraints:
\[n_a(0) \leq n_a(\tau)|_{\tau=0} \leq n_a(0) \]
\[e_a(0) \leq e_a(\tau)|_{\tau=0} \leq e_a(0) \]
\[\dot{n}_a(0)T \leq \frac{n_a(\tau)}{d\tau}|_{\tau=0} \leq \dot{n}_a(0)T \]
\[\dot{e}_a(0)T \leq \frac{e_a(\tau)}{d\tau}|_{\tau=0} \leq \dot{e}_a(0)T \]

Velocity and Curvature Constraints:
\[\frac{v_{lo}}{v_{hi}^2} \leq \frac{W_v}{T^2} \left(\left(\frac{dn_a}{d\tau} \right)^2 + \left(\frac{de_a}{d\tau} \right)^2 \right) \leq 1 \]
\[-1 \leq W_c \frac{\frac{dn_a}{d\tau} \frac{d^2 e_a}{d\tau^2} - \frac{d e_a}{d\tau} \frac{d^2 n_a}{d\tau^2}}{\left(\frac{dn_a}{d\tau} \right)^2 + \left(\frac{de_a}{d\tau} \right)^2} \leq 1 \]

Final Constraints:
\[0 \leq W_f \left((n_a(1) - n_f)^2 + (e_a(1) - e_f)^2 \right) \leq 1 \]
\[\theta_{lo} \leq W_d \tan^{-1} \left(\frac{\frac{d e_a}{d\tau}}{\frac{d n_a}{d\tau}} \right) \leq \theta_{hi} \]
Nonlinear Trajectory Generation

System Dynamics:
\[\dot{x} = f(x, u) \]

State and Input Constraints:
\[
\begin{align*}
 lb_0 & \leq \psi_0(x(t_0), u(t_0)) & \leq ub_0 \\
 lb_f & \leq \psi_f(x(t_f), u(t_f)) & \leq ub_f \\
 lb_i & \leq S(x, u) & \leq ub_i
\end{align*}
\]

Cost Function:
\[
J = \phi_0(x(t_0), u(t_0)) + \phi_f(x(t_f), u(t_f)) + \int_{t_0}^{t_f} L(x(t), u(t)) dt
\]

New Outputs:
\[
z = G(x, u, u^{(1)}, ..., u^{(r)}), \quad (x, u) = H(z, z^{(1)}, ..., z^{(s)})
\]

Using B-spline representation:
\[
z_1(t) = \sum_{i=1}^{p_1} B_{i,k_1}(t) C_i^1, ..., z_q(t) = \sum_{i=1}^{p_q} B_{i,k_q}(t) C_i^q
\]

New Cost Function:
\[
\min_{y \in \mathbb{R}^M} F(y) \quad \text{subject to} \quad lb \leq c(y) \leq ub
\]
\[
y = (C_1^1, ..., C_{p_1}^1, C_1^2, ..., C_{p_2}^2, ..., C_1^q, ..., C_{p_q}^q)
\]

- Based on a combination of nonlinear control theory, spline theory, and sequential quadratic programming
- Three key steps:
 1. Find a new set of outputs of a system using the differential flatness property
 2. Further represent these outputs in terms of B-splines
 3. Use NPSOL to solve the coefficients of the B-spline functions
Feedforward networks with sigmoidal units are \textit{universal approximators}.

Superior regression performance while avoiding over-fitting the sampled data.

Given I/O samples, parameters adjusted typically by gradient methods.
Connectionist Approximation

The considered approximator is a network of nonlinear nodes, each realizing the I/O relation:

\[y = \phi \left(b + \sum_{i=1}^{n} w_i x_i \right) \]

These nodes are organized in a layered structure to implement

\[\hat{p}(s, r) = W_3 \Theta \left(W_2 \Theta \left(W_1 \begin{bmatrix} s \\ r \end{bmatrix} + b_1 \right) + b_2 \right) + b_3 \]

Given a samples of a desired I/O relation, determining the optimal parameters is a matter of minimizing

\[E(\mathcal{W}) = \sum_{i=1}^{s} \left\| t_i - \Phi(\mathcal{W}, x_i) \right\|_2^2 \]
Signature and PD Lookup Tables

<table>
<thead>
<tr>
<th>el/az</th>
<th>0</th>
<th>+/-30</th>
<th>+/-31</th>
<th>+/-159</th>
<th>+/-160</th>
<th>+/-180</th>
</tr>
</thead>
<tbody>
<tr>
<td>+90</td>
<td>1E0</td>
<td>1E0</td>
<td>1E0</td>
<td>1E0</td>
<td>1E0</td>
<td>1E0</td>
</tr>
<tr>
<td>+45</td>
<td>5E-3</td>
<td>5E-3</td>
<td>1E0</td>
<td>1E0</td>
<td>5E-3</td>
<td>5E-3</td>
</tr>
<tr>
<td>+20</td>
<td>5E-4</td>
<td>5E-4</td>
<td>5E-1</td>
<td>5E-1</td>
<td>5E-4</td>
<td>5E-4</td>
</tr>
<tr>
<td>0</td>
<td>5E-5</td>
<td>5E-5</td>
<td>5E-1</td>
<td>5E-1</td>
<td>5E-5</td>
<td>5E-5</td>
</tr>
<tr>
<td>-20</td>
<td>5E-4</td>
<td>5E-4</td>
<td>5E-1</td>
<td>5E-1</td>
<td>5E-4</td>
<td>5E-4</td>
</tr>
<tr>
<td>-45</td>
<td>5E-3</td>
<td>5E-3</td>
<td>1E0</td>
<td>1E0</td>
<td>5E-3</td>
<td>5E-3</td>
</tr>
<tr>
<td>-90</td>
<td>1E0</td>
<td>1E0</td>
<td>1E0</td>
<td>1E0</td>
<td>1E0</td>
<td>1E0</td>
</tr>
</tbody>
</table>

Large UAV Signature Data.

<table>
<thead>
<tr>
<th>Signature Value</th>
<th>Paq = 0.99</th>
<th>Paq = 0.5</th>
<th>Paq = 0.1</th>
<th>Paq = 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>275.0</td>
<td>348.2</td>
<td>402.1</td>
<td>475.2</td>
</tr>
<tr>
<td>1E-1</td>
<td>154.6</td>
<td>195.8</td>
<td>226.1</td>
<td>267.2</td>
</tr>
<tr>
<td>1E-2</td>
<td>87.0</td>
<td>110.1</td>
<td>127.2</td>
<td>150.3</td>
</tr>
<tr>
<td>1E-3</td>
<td>48.9</td>
<td>61.9</td>
<td>71.5</td>
<td>84.5</td>
</tr>
<tr>
<td>1E-4</td>
<td>27.5</td>
<td>34.8</td>
<td>40.2</td>
<td>47.5</td>
</tr>
<tr>
<td>1E-5</td>
<td>15.5</td>
<td>19.6</td>
<td>22.6</td>
<td>26.7</td>
</tr>
<tr>
<td>1E-6</td>
<td>8.7</td>
<td>11.0</td>
<td>12.7</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Large UAV / Medium SAM Probability of Detection (Acquisition, Paq) Data.
Approximation of Tabular Data

Less than 10^{-7} MSE error on the tabular data has been achieved with 3-layer networks of 8 (PD) and 11 (Signature) nonlinear nodes.
B-Spline Approximation
(same accuracy on tabular data)

Signature

Probability of Detection

Azimuth Angle (rad) Elevation Angle (rad)

Probability of Detection (pd)

Range Signature
Connectionist vs Spline Approximators

Connectionist approximation
8 / 11 Sigmoidal Nonlinear Nodes

Tensor-product B-spline approximator
Piecewise polynomials of order 4x2
Connectionist vs Spline Approximators

Connectionist approximation
8 / 11 Sigmoidal Nonlinear Nodes

Tensor-product B-spline approximator
Piecewise polynomials of order 4x2
Connectionist vs Spline Approximators

- **Connectionist approximation**
 - 8 / 11 Sigmoidal Nonlinear Nodes

- **Tensor-product B-spline approximator**
 - Piecewise polynomials of order 4x2

B-Splines have a greater tendency to overfit the tabular data, even in lower orders.
Conclusions and Future Work

- Accuracy in providing proper guidance to real-time NTG is essential.
- Connectionist tools offer smooth, accurate, and inexpensive approximation of guidance.
- It is possible to “prune” the architecture systematically without involving trial-and-error (unlike B-splines).
- B-Spline approximators are still inherent in the NTG procedure.