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Towards Better Understanding of Protein 
Secondary Structure: Extracting Prediction 

Rules
Minh N. Nguyen, Jacek M. Zurada*, Fellow and Jagath C. Rajapakse 

Abstract— Although numerous computational techniques have been applied to predict protein secondary structure (PSS), only 
limited studies have dealt with discovery of logic rules underlying the prediction itself.  Such rules offer interesting links between 
the prediction model and the underlying biology. In addition, they enhance interpretability of PSS prediction by providing a 
degree of transparency to the predicting model usually regarded as a black-box. In this paper, we explore the generation and 
use of C4.5 decision trees to extract relevant rules from PSS predictions modeled with two-stage support vector machines (TS-
SVM).  The proposed rules were derived on the RS126 dataset of 126 nonhomologous globular proteins and on the PSIPRED 
dataset of 1923 protein sequences. Our approach has produced sets of comprehensible, and often interpretable, rules 
underlying the PSS predictions.  Moreover, many of the rules seem to be strongly supported by biological evidence. Further, our 
approach resulted in good prediction accuracy, few and usually compact rules, and rules that are generally of higher confidence
levels than those generated by other rule extraction techniques. 

Index Terms— protein structure, secondary structure prediction, support vector machines, multi-class SVM, C4.5 decision trees, 
rule extraction. 

——————————    —————————— 
 

1 INTRODUCTION

 
nformation on secondary structures of amino acid resi-
dues in proteins provides valuable clues for the predic-
tion of their three dimensional (3-D) structure and func-

tion.  Knowledge of a protein's structure, in turn, contrib-
utes to our understanding of the functions of the protein 
and is vital to many aspects of living organisms such as 
those of enzymes, hormones, and structural material, etc. 
It also helps in designing new drugs for combating dis-
ease. Hence, prediction of  3-D structure of a protein from 
its amino acid sequence has become one of the major 
goals of bioinformatics. 
Unfortunately, the protein structure prediction problem is 
a combinatorial optimization problem, and hence it has so 
far eluded an effective solution because of the exponential 
number of potential solutions. One of the current ap-
proaches is to first predict protein secondary structure 
(PSS) assuming a linear representation of the full knowl-
edge of the 3-D structure, and to use it to predict the 3-D 
structure. The goal of secondary structure prediction is to 
assign a pattern of residues in amino acid sequences to a 
class of protein secondary structure elements most often 

labeled as an -helix ( ), -strand ( ) or coil ( ), the re-
maining type. 
Many computational techniques have been proposed in 
the literature to deal with the PSS prediction problem. 
The statistical methods are mostly based on the likelihood 
of each amino acid sequence being one of three types of 
secondary structures [1]-[3]. Neural networks use resi-
dues in a local neighbourhood as inputs and compute an 
arbitrary non-linear mapping [4]-[7]. The Bayesian ap-
proach provides a framework to account for non-local 
interactions among amino acid residues [3], where the 
inferences are based on the generalized probability distri-
butions incorporating prior probabilities of segments of 
secondary structure elements. The consensus approaches 
combine different classifiers in parallel to achieve a single 
superior predictor. Cuff and Barton employed a majority 
voting scheme to combine predictions from different 
techniques [8]. More complex approaches for combining 
different methods based on neural networks and linear 
discrimination have also been studied [9]. Sen et al. pro-
posed a consensus algorithm for protein secondary struc-
ture prediction by combining two complementary meth-
ods: fragment database mining (FDM) was used to exploit 
the Protein Data Bank structures and the GOR V based on 
information theory and Bayesian statistics [10]. Recently, 
Meiler and Baker proposed using the information of 3-D 
structure and PSI-BLAST [11] profiles as inputs to a neu-
ral network [12]. Support Vector Machines (SVM) have 
been applied to PSS prediction, in combination with sev-
eral binary classifiers [13]. 
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The accuracy of the single-stage approaches to PSS pre-
diction, however, has been found insufficient. Rost and 
Sander proposed the PHD approach using Multi-Layer 
Perceptrons (MLP) in cascade, with the second layer of 
MLP improving the accuracy of the prediction by captur-
ing the contextual relations among the secondary struc-
tures at the output of the first layer [4]. We proposed a 
two-stage SVM (TS-SVM) for the prediction of PSS [14], of 
relative solvent accessibility [15], and of accessible surface 
area of amino acids [16], all with inputs from PSI-BLAST 
profiles. These techniques are able to incorporate useful 
information from multiple sequence alignments or PSI-
BLAST profiles and contextual information among sec-
ondary structures in the prediction scheme.  
Despite the success of many computational approaches, 
not much research has been done to discover what under-
lying general patterns of amino acid sequences are associ-
ated with specific secondary structure elements. Recently, 
He et al. proposed a rule-extraction method for PSS pre-
diction by combining SVM and decision trees [17]. The 
method uses one-stage of binary SVM, which is unable to 
capture contextual relationships among the secondary 
structures and  can not assign directly a pattern of amino 
acid sequences to a class of PSS outputs with sufficient 
accuracy. 
To alleviate this shortcoming, we propose combining the 
PSS predictions from the TS-SVM with C4.5 decision trees 
to extract useful rules possibly governing PSS prediction. 
This not only increases the accuracy of prediction by deci-
sion trees or SVM along with decision trees, but it also 
renders a set of PSS prediction rules, which are more con-
fident and more evident biologically as compared to rules 
reported so far. These rules describe amino acid patterns 
that are likely to produce specific secondary structures in 
a particular context. The rules can therefore imply protein 
structures likely to be produced by short segments of 
amino acids in a specific context, and may be useful in 
guiding biological experiments for determining protein 
structures, or, inversely,  for inferring amino acid patterns 
from secondary protein structures.  
The input to the TS-SVM is based on the position-specific 
scoring matrices generated by PSI-BLAST profiles of the 
input amino acid sequence. We use the output of TS-SVM 
to generate PSS prediction rules by C4.5 decision trees. 
We extracted three sets of rules for PSS prediction based 
on whether the prediction is purely on amino acid pat-
terns, or it uses structural types of residues in the vicinity 
of predicted output. Furthermore, many rules extracted 
by our method were more confident and clearer sup-
ported by evidences from biological literature than any 
rules reported so far. Our method resulted in an im-
provement of 2.5% as compared to the best results on the 
RS126 dataset of 126 nonhomologous globular proteins 
[4], achieved previously by a rule extraction method.  
The paper is organized as follows: Section 2, Methods, 
describes TS-SVM and C4.5 decision tree technique.  Sec-
tion 3, Experiments and Results, describes the datasets 
used, simulations made, and discusses extracted rules.  
Section 4, Discussion, provides concluding remarks for 
the analyses made. 

2 METHODS
2.1 Two-stage SVM 
Let u = (u1, u2,..., un) be a given amino acid sequence 
where ui  U and U denotes the set of 20 amino acid 
residues, and 1 2( , ,..., )nt t tt  be the corresponding secon-
dary structure sequence where Tt  and the set of sec-
ondary structures, 

i
{ , , };T  n is the length of the 

sequence. The prediction of PSS sequence is the problem 
of finding the optimal mapping from the space of  U to 
the space of T . Let iv be the 21-dimensional feature 
vector representing residue ui where 20 values are from 
raw matrices of PSI-BLAST profiles ranging in [0, 1] and 
the remaining unit is used for padding to indicate an 
overlapping end of the sequence [10]. Let 

1 1i i h i i h( ,..., ,..., )r v v v be the input to the multi-class 
SVM at site i of the sequence where h1 denotes the width 
of a symmetric neighbourhood window of residues on 
one side. TS-SVM uses two multi-class SVMs in cascade 
for the prediction of protein features from amino acid 
sequences [14]-[16]. We use a multi-class SVM proposed 
by Crammer and Singer for both stages [18]. 
The first-stage constructs three discriminant functions for 
three secondary structures by solving the single optimiza-
tion problem: 

1
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and 1 1 1w r ( , ) ( ) ( )i j i jr r r rK denotes 
the kernel function. The input vectors, derived from a 
window of 2h1+1 amino acid residues, are transformed 
into a higher dimensional space via kernel function 1K . 
Once the optimal parameters k

j are obtained, the dis-
criminant function of structure k,  for an input ri is 
given by 

1
kf

1 1 1 1
1

i
jThe second stage uses another SVM to predict PSS from 

the output of the first stage SVM to enhance prediction 
accuracy by capturing the contextual dependences of sec-
ondary structures, for example, -strands span over at 
least three residues and -helices composed of at least 
four residues [4], [14]. 

( ) ( , ) ( )
N

k k k
i j i jf r r r w rK   (3) 

The input to the second SVM at site i is obtained from a 
neighbourhood,

2 2
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on one side. The logistic sigmoid function is selected to 
normalize the inputs to the second stage to [0, 1]. The in-
put patterns to the second stage are converted to a higher 
dimensional space by using a mapping 2  and a kernel 
function: . The outputs in the 
higher dimensional space are linearly combined by a 
weight vector 2  to produce the final prediction. The vec-
tor 2  is obtained by solving the following convex quad-
ratic programming problem, over all secondary structure 
sequences predicted by the first stage in the training stage. 
The secondary structural type  at site i of input se-
quence is estimated by 

1 1 1 1
2 2 2( , ) ( ) ( )i j i jd d d dK

kw
kw

^
it

^ 1
2arg max ( )

T

k
i i

k
t f d   (4) 

 
where i  is the discriminant function at 
the second stage given by as in Eq. (3). 

1
2 2 2( ) ( )k k

i
1f d w d
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1
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jfkd e d

2.2 Decision Trees 
SVMs perform well compared to other statistical or ma-
chine learning techniques in predicting protein features 
[14]-[17] because of their generalization capabilities. 
However, SVMs alone yield black box models and pro-
vide no biologically meaningful prediction rules [17]. De-
cision trees, on the other hand, are capable of explicitly 
describing the nature of prediction since they capture 
rules as prevailing regularities governing the prediction 
process. Prediction rules offer useful guidance for wet-lab 
experiments and a basis for advanced inference of bio-
logical features correlated to specific structures. 
Decision tree learning provides a means of approximating 
discrete-valued target functions, in which the learned 
function is represented by a decision tree [19]. In order to 
improve human comprehensibility, learned decision trees 
can be re-represented as sets of if-then rules. We use C4.5 
tree induction algorithm at the output of TS-SVM to gen-
erate rules for PSS prediction. C4.5 was chosen because it 
has shown to extract more accurate rules in many applica-
tions including bioinformatics problems, for example 
generating automatic rules for protein annotation, mining 
protein sequences in SWISS-PROT, and PSS prediction 
[17]. It uses the gain ratio criterion based on the informa-
tion theory to select the attribute at the root of the tree 
and produces suboptimal trees by learning heuristically 
from input [20]. The important rules are generated by first 
creating a decision tree on a training set, and then prun-
ing the tree by replacing a whole of subtree with a leaf 
node if a decision rule establishes a greater expected error 
rate in the subtree than that in the single leaf. Rule sets 
are then derived from writing a rule for each path in the 
decision tree from the root to a leaf. The leaf-hand side is 
easily built from the label of the nodes and the labels of 
the arcs. 
Let the training set of exemplars for C4.5 decision tree be 

where the input at site j is 2
train {( , ) : 1,..., }j jt j Na

2 2 1
and tj is the de-

sired secondary structure where j . The 
training set is used to train the decision tree and to extract 
the corresponding rule sets. The rules are then tested with 
the same data set for evaluation of the performance of the 
algorithm. 

1

2 2 2( ... ,... , ,... ,... )k k k
j j h j j h j h j j hd d d

3 EXPERIMENTS AND RESULTS

The presented approach was implemented using posi-
tion-specific scoring matrices generated by PSI-BLAST as 
inputs and tested on benchmark with RS126 dataset. The 
results were compared with other prediction methods 
and with other rule extraction results for PSS on this data-
set.  Separate rule extraction using the TS-SVM methods 
and C4.5 was also performed on PSIPRED dataset of 1923 
proteins.  Subsequently, a set of common rules for both 
datasets was identified as discussed below. 
 
3.1 Datasets 
The set of 126 nonhomologous globular protein chains, 
used by Rost and Sander and referred to as the RS126 set 
[4], was used to evaluate the accuracy of the predictors 
and relevance of extracted rules. Many current PSS pre-
diction methods have been developed and tested on this 
dataset.  To refer to most relevant reports in the literature, 
experiments on this dataset were performed with 7-fold 
validation. The dataset contained 23349 residues with 
32% -helix, 23% -strand, and 45% coil. The RS126 set is 
available at  
http://www.compbio.dundee.ac.uk/~www-jpred/data/pred_ 
res/126_set.html.   
A much larger dataset PSIPRED [7] has also been used in 
this project to evaluate the TS-SVM predictors with and 
without C4.5. After eliminating 322 sequences with some 
unknown amino acids, experiments were performed on 
remaining 1923 sequences using 10-fold validation.  The 
dataset is available at 
 http://bioinf.cs.ucl.ac.uk/downloads/psipred/old/data. 
The type of the secondary structure of each residue in 
training and testing sets was assigned from DSSP [4]. This 
reduction approach was adopted since it is commonly 
used for comparison of PSS prediction accuracies by other 
researchers [4]-[9]. 

3.2 Implementation 
The mostly used SVM software includes LibSVM 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/), Pls-SVM 
(http://www.esat.kuleuven.ac.be/sista/lssvmlab/), and SVM-
Light (http://svmlight.joachims.org/).  In this paper, the 
multi-class SVM method was implemented using BSVM 
library which is known to show  fast convergence for 
large optimization problems [21]. The Gaussian kernel  

2

( , ) e x yx yK showed superior performance over lin-
ear and polynomial kernels for predicting PSS [14], rela-
tive solvent accessibility [15],  accessible surface areas of 
amino acids [16], and gene classification [22]. The sensi-
tivity parameter  and the Gaussian kernel parameter  
were determined by using the grid-search method [21]. 
Grid-search provides good parameter estimates for multi-
class SVM in a relatively short time. The parameters of 
the Gaussian kernel and TS-SVM, as 1=0.0625, 2=0.0156 
and 1= 2=0.5, and the neighborhood window h1 = 7, and 
h2 = 3 were empirically determined for optimal perform-
ance. We implemented the  decision tree C4.5 by using 
Weka software [23]. For C4.5, the confidence factor of 60% 
was chosen, and an appropriate value for the minimum 
number of instances per leaf  within [1, 60] was selected 
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based on cross-validation results. 

3.3 Prediction Accuracies 
We used Q3 accuracy to measure the percentages of cor-
rectly predicted residues of three types of secondary 
structures [8]: 

3 100T

Ttwhere t is the number of correctly predicted residues 
and t is the total number of residues observed of secon-
dary structure type t. We also used a rule's confidence to 
indicate its accuracy verified on the whole dataset.  The 
confidences C , C , and C   represent the percentages of 
correctly predicted residues of each type of secondary 
structure.  

t
t

t

Q    (5) 
 

The performance of secondary structure prediction on the 
RS126 dataset of 126 proteins by using TS-SVM and C4.5 
is shown in Table 1. It can be seen that the combination of 
TS-SVM and C4.5 predicted PSS with the highest average 
accuracy (75.0%) in comparison to C4.5 alone (58.6%), and 
to the combination of SVM with C4.5 (73.7%). It should be 
noted that the combination of TS-SVM and C4.5 decision 
trees generates fewer rules than SVM + C4.5 or C4.5 alone, 
while also yielding higher accuracy of prediction even 
with fewer rules. In addition, a decision tree with smaller 
number of leaves makes rules more comprehensible and 
at the same time more reliable. Less leaves means that on 
the average there are more examples per leaf that give the 
rule better statistical conformation. 
Table 2 shows comparative performance of different PSS 
on the RS126 set without C4.5 rules (rows 2, 4) and with 
C4.5 rules (rows 1, 3, 5). The results indicate that after 
combining SVM or TS-SVM with C4.5 decision trees, the 
accuracy of the combinations drops by 3% and 1.6%, re-
spectively, because of pruning of less significant rules. 
This occurs when some amino acid patterns contributing 
to the prediction, but occurring rarely in the dataset, are 
filtered out during pruning when building decision trees. 
Table 2 also shows an improvement of 2.5% in prediction 
accuracy (see row 1 and 3) of our approach compared to 
the method of He et al. produced on RS126 by combining 
single-stage binary SVM with C4.5 [17]. Though the 
method only reported the accuracies of three binary SVM 
classifiers, we computed the overall prediction accuracy 
from the counts of structure types as 72.5%.  
To validate the rules extracted by our approach on differ-
ent training and testing datasets, we have used the rules 
produced with a confidence level above 60% on PSPIRED 
and computed the accuracy on RS126 dataset. The accu-
racy of 76.1% shows that our approach has the ability to 
perform well on different training and testing datasets. 

3.4 Extracted Rules 
Subsequent description concerns rules extracted using the 
C4.5 method from TS-SVM predicting model.  Overall 
number of rules produced with confidence level above 
60% was 56 and 523, on RS126 and PSPIRED datasets, 
respectively.  This count includes all rules of three differ-
ent types as defined below.  In the discussion to follow, 
we have, however, reduced the set of all rules to the sub-

set being intersection of both sets. It jointly identifies 32 
common rules that cover both sets for which we are seek-
ing biological relevance and potential interpretability 
across both datasets. 
 

Table 1: Generated rules and accuracies (Acc) of different 
type for rule-based classifiers, obtained using seven-fold 
cross validation on a RS126 dataset of 126 proteins, 60% 
confidence level. 

C4.5 SVM + C4.5 TS-SVM  
+ C4.5 

Validation 
Run 

Acc  Rules Acc Rules Acc Rules 

1 56.6 148 72.4 91 74.4 45 

2 59.0 159 75.2 79 76.9 41 

3 58.4 169 74.2 79 74.6 61 

4 57.5 166 72.2 75 73.3 49 

5 58.9 163 73.1 78 73.7 45 

6 61.6 159 76.0 100 78.2 52 

7 58.5 167 72.9 79 73.6 53 

Average 58.6 161 73.7 83 75.0 49 

 

Dataset Method  C  C  C  Acc 

 Binary SVM 
 + C4.517  

72.8 79.6 69.3 ~72.5 

 
RS126 

TS-SVM14 73.1 65.7 83.8 78.0 
 

 TS-SVM  
+ C4.5 

77.9 69.3 75.3 75.0 

 
PSIPRED 

TS-SVM14 78.4 
 

74.6 83.5 80.9 
 

 TS-SVM  
+ C4.5 

84.7 80.7 77.0 79.3 

Table 2: Performance comparison between SVM and TS-
SVM alone vs. with C4.5 for PSS prediction on the RS126 
and PSIPRED datasets. 
 
Below we partitioned the common rules into three cate-
gories I, II, and III, based on whether TS-SVM already 
predicted the specific secondary structure. The rules are 
shown in Tables 3, 4, and 5. The bold amino acid indicates 
the position of the secondary structure. The symbol ‘x’ 
indicates that a ‘do not care’ condition for the amino acid 
in that site.  

 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



M. N. NGUYEN ET AL.:  TOWARDS BETTER UNDERSTANDING OF PROTEIN SECONDARY STRUCTURE 5

The confidence of the rules on each dataset is given in 
third and fourth column of the tables, respectively. The 
co-occurrences of such patterns with a specific secondary 
structure were the basis of prediction of PSS in GOR 
methods [1]. As can be seen from all the tables, the pre-
sented method resulted in more accurate predictions than 
those based on linear associations in the GOR method. 
This is because of the complex non-linear mapping by TS-
SVM and extraction of relevant rules transforming pat-
terns of amino acids to secondary structures.  To show the 
usefulness and biological relevance of the rules, we inter-
pret some of the derived rules by discussing evidence 
found in the literature. 

 Type I Rules 
Type I rules extracted by the presented method are 
shown in Table 3. Listed are rules common for two data-
sets with variable confidence above 60%, indicating 
which amino acid patterns lead to the prediction of spe-
cific protein secondary structures. The first two rules in-
dicate that the method predicts an -helix when patterns 
LxxM and VxAL are present, with 66.7% and 60.0% con-
fidence, and 60% and 64% confidence, respectively. As 
seen, Leucine (L, Leu) and Methionine (M, Met) are pre-
sent at three sites downstream of the site. Amino acids L 
and M are non-polar R group (hydrophobic) and tend to 
form -helix, and their presence at three sites downstream 
proves to be helix-stabilizing.  
It has been previously reported that L-L, L-V, L-I, F-M, 
and L-M pairs at the local site and occurs commonly three 
and four sites downstream in -helices and contribute to 
protein’s structural stability [24]. Experimental and theo-
retical studies on natural and synthetic peptides and pro-
teins indicate that individual side chains differ in their 
potential of helix-forming. Four aliphatic side chains oc-
cur in the standard complement of amino acids: L and A 
are helix stabilizing whereas V and I are weakly destabi-
lizing helices [25]. From position-specific amino acid 
preferences in -helices [26], there is a peak preference for 
hydrophobic amino acids L and V in positions N4 (N-cap 
+ 4) and C3 (C-cap - 3) and M in position C4 (C-cap - 4). 
Helix boundary residues (the first and last helical resi-
dues) are called N-cap and C-cap at the N- and C-
terminus, respectively. Positions N4 and C4 are under-
neath the polypeptide chain leading the helix, and also 
usually on its interior face as the chain at each end must 
connect to the rest of the protein [26]. 
As also seen from Table 3, patterns DVxLG, SVxVG, 
WVxIG, and TVTV, predict -strands with 100% confi-
dence for RS126 and somewhat lower confidence levels 
for PSPIRED as shown in the right-most column. Rule 3 
shows that if Aspartic acid (D, Asp) is present at a site 
and Valine (V, Val), Leucine (L, Leu), and Glycine (G, Gly) 
at one, three, four sites downstream, respectively, then 
the secondary structure at the site will be a -strand. This 
rule suggests that negatively charged (hydrophilic) amino 
acid D at the local site and non-polar R group (hydropho-
bic) amino acids V, L, and G downstream, prove to be 
sheet stabilizing. Colloc'h and Cohen focused their atten-
tion on the conformational and structural properties of 

residues that initiate or terminate a -strand [27] and are 
referred to as -breakers because of their role in breaking 
the regular geometric structure of the strand. They found 
a preference for D, T, and R as the N-terminal -breaker 
and G and S as the C-terminal -breaker. Interestingly, 
our previous work found that hydrophobic amino acids V 
and I strongly tend to be -strand [14]. Moreover, in rules 
6 and 7 in Table 3, the weakly hydrophilic amino acid T is 
two sites upstream, the non-polar R group (hydrophobic) 
amino acid V is one site upstream, then another non-polar 
R group (hydrophobic) amino acids I or weakly hydro-
philic amino acid T is the local site, and finally another 
hydrophobic amino acid V. If this forms a sheet, then the 
two hydrophobic amino acids C and  V moves in the 
same direction (possibly into the core of the protein), and 
the hydrophilic amino acid T could then face the solvent 
[17]. 

Table 3: Type I rules extracted in predicting PSS: confi-
dences of amino acid patterns with the secondary struc-
tures (bold symbol indicates the site where the prediction 
of secondary structure is made; x denotes any one of the 
20 amino acids) 

Prediction Rule Confidence 
on RS126 

Confidence on 
PSIPRED 

 1 LxxM 66.7 60.0 

 2 VxAL 60.0 64.0 

 3 DVxLG 100 60.0 

 4 SVxVG 100 93.8 

 5 WVxIG 100 80.0 

 6 TVTV 100 88.0 

 7 TCIV 66.7 100 

 8 AVP 100 72.7 

 9 MxP 72.2 70.4 

 10 DxY 65.2 60.0 

 
Further, in rule 8 in Table 3, pattern AVP predicts a coil 
with 100% and 72.7% confidence, respectively. Amino 
acid Proline (P, Pro) invariably shows a high frequency of 
occurrence at neighbouring positions of all coil sites. 
Given the unique structural feature of amino acid P 
where its side-chain is bonded to the main-chain N atom, 
the conformation of the polypeptide backbone is often 
perturbed by the presence of amino acid P and, therefore, 
is induced to form coils in proteins [28]. The rule 10 in 
Table 3 shows that if Aspartic acid (D, Asp) is present at a 
site with Tyrosine (Y, Tyr) two sites downstream, then a 
coil is predicted with 65.2% and 60% confidence, respec-
tively. The amino acid D in negatively charged R group 
(hydrophilic) and Y in aromatic R group (hydrophobic) 
tend to create coil, spanning over at least three adjacent 
residues [14], and making the likelihood of a presence of 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



6 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 

the secondary structure stronger. Crasto and Feng found 
that amino acid D has a moderate preference for coil con-
formation and the coil propensities of amino acids Y and 
P have significant variations in coils of different sizes [28]. 
Also, charged amino acids D and K have lower frequen-
cies of occurrence in the interior than in the surface coils.  

Type II Rules 
Table 4 lists type II rules or the amino acid patterns that 
enhance the prediction of a secondary structure by C4.5 if 
the presence of the secondary structure is already known 
for TS-SVM prediction. The prediction accuracy of -
helices by TS-SVM alone stands at 73.1% (see Table 2). 
The decision tree predicts an -helix for patterns GxxY, 
MxxS, DxxxxxxY, and PxNx if TS-SVM predicts the site to 
be an -helix (rules 11-14). The confidence level of the 
decision tree prediction is 100% for RS126 and exceeds 
88% for PSIPRED.  The above rules can be given a differ-
ent interpretation: when one of the four above amino acid 
patterns appear, then the surrounding patterns of amino 
acid make the confidence of prediction to be at least 88%.  
For illustration, consider rule 16 in Table 4, which indi-
cates that if hydrophilic amino acid Serine (S, Ser) is at 
one site upstream, Proline (P, Pro) is present at the local 
site, Aspartic acid (D, Asp) is at two sites downstream, 
and TS-SVM predicts the local site to be an -helix, then 
the pattern SPxD is present with 89.3% and 83.3% confi-
dence, respectively. For this pattern, hydrophilic amino 
acid S followed the hydrophobic amino acid P and an-
other hydrophilic amino acid D at two sites downstream 
prove to be helix stabilizing if the amino acid P forms an 
-helix. From position-specific amino acid preferences in 
-helices [26], the N-cap position is dominated by amino 

acid S. This is because when amino acid S does occur in -
helix, its OH often forms a second H bond to a backbone 
CO on the previous helical turn. The preference distribu-
tion for amino acid P indicated that amino acid P in the 
first turn are almost exclusively in the N1 position (the 
first residue after the N-cap) [26]. This rule concurs with 
the findings of Richardson et al. that amino acid P prefers 
to be a helix-initiator than a helix-breaker [26]. Also, there 
is a peak of preference for hydrophilic amino acid D in 
positions N2 and N3 (the second and third residue after 
the N-cap).  
Moreover, results in Table 4 indicate that the presence of 
the amino acids with the known secondary structure type 
at the local site improves the confidence of the secondary 
structure prediction. 

Type III Rules 
The patterns expressed by rules of type III listed in Table 
5 make use of the secondary structures predicted by TS-
SVM not only at the site but also at adjacent sites. Interest-
ingly, the presence of a secondary structure at a particular 
location is associated here with the presence of the same 
structure in the vicinity.  
For instance, rule 29 shows that if Cystine (C, Cys) is at 
four sites upstream, Arginine (Arg, R) is at four sites 
downstream, and an -helix is predicted by TS-SVM at 
two sites upstream, at two sites downstream, and at the 

local site, then the secondary structure is predicted as an 
-helix with 100% and 93.3% confidence. This result sug-

gests that hydrophilic amino acids C at four sites up-
stream and R at four sites downstream prove to be helix-
stabilizing if the amino acids at two sites upstream, two 
sites downstream, and the local site form an -helix. 

Table 4: Type II rules generated by TS-SVM and C4.5 ap-
proach when the secondary structure is already predicted 
by TS-SVM. 

Prediction Rule Confidence 
on RS126 

Confidence on  
PSIPRED 

 11 GxxY 100 90.4 

 12 MxxS 100 88.5 

 13 DxxxxxxY 100 88.2 

 14 PxNx 100 88.0 

 15 DxN 91.7 85.6 

 16 SPxD 89.3 83.3 

 17 GxxxxxK 100 90.8 

 18 TxxxxxR 100 91.0 

 19 IxE 91.7 90.7 

 20 ExY 89.3 88.0 

 21 HxxxN 86.1 84.8 

 22 xxxxMxR 85.7 88.0 

 23 LxxxxA 85.3 91.3 

 24 GP 93.7 89.1 

 25 IxxM 81.1 84.0 

 26 MxxY 80.0 78.7 

 27 xxxxG 78.6 81.2 

 28 LxxxxxC 75.0 78.1 

 

Prediction Rule Confidence 
on RS126 

Confidence 
PSIPRED 

 29 Cxx/ xxxx/ xR 100 93.3 

 30 KxxxVx/ xx/  94.7 96.3 

 31 Q/ x 84.9 89.1 

 32 GxLx/  71.1 78.1 
Table 5: Type III rules generated by TS-SVM and C4.5. 
The secondary structure at the site as well as the struc-
tures / , / , /  have been predicted by TS-SVM. 
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As shown in Table 5, the pattern of rule 29 given the sec-
ondary structural type of -helix at the local site indicates 
they stabilize helix. Also in rule 29 in Table 5, amino acid 
R in positively R charged group (hydrophilic) strongly 
tends to be -helix and helices consist of at least four con-
secutive residues [14], and, therefore, the secondary struc-
ture of the target is a strong -helix.  
The rule 32 in Table 5 demonstrates that if hydrophobic 
amino acid Glycine (G, Gly) is two sites upstream, Leu-
cine (L, Leu) is present at the local site, and TS-SVM pre-
dicts the local site and one site downstream to be coils, 
the pattern GxLx/  is present with 71.1% and 78.1% con-
fidence, respectively. For this pattern, hydrophobic amino 
acid L is known to have low coil propensities, however, 
these amino acids have high propensities at neighboring 
positions of G in coils [28]. Amino acid G is commonly 
found at neighboring positions of hydrophobic Isoleucine 
(I, ILE), Leucine (L, Leu) and hydrophilic coil residues. 
 
4 DISCUSSION
Utilizing the PSS predictions made by TS-SVM approach, 
we employed C4.5 decision trees to generate prediction 
rules.  As manifested by the experiments, we were able to 
extract three types of joint prediction rules on RS126 and 
PSIPRED datasets. To generate a set of prevailing rules 
that can also be interpreted, we used empirically preset 
confidence threshold of 60%. The number of rules derived 
was relatively small and they showed higher confidence 
levels compared to those derived by other approaches. 
The rules were divided into three types based on whether 
the secondary structures predicted by TS-SVM were al-
ready included in the prediction rule. The number of 
structures in each rule in the datasets range from 11 to 813. 
The final overall prediction accuracies of TS-SVM+C4.5 
were lower than of TS-SVM alone because of pruning of 
less confident rules in the decision tree. However, our 
overall accuracies were better than earlier methods com-
bining binary/multi-class SVM with C4.5 [17]. The reason 
is that the contextual effects on structural formations on a 
secondary structure at a particular site by the neighbour-
ing structures are taken into account for prediction by TS-
SVM. As can be seen from Table 2, lower overall accura-
cies after incorporating C4.5 are mainly due to the low 
prediction accuracies of coil structures. Interestingly, by 
narrowing down the patterns responsible for PSS predic-
tion, improvements of accuracies of -helices and -
strands were seen which carry important structural for-
mation. Coils account for remaining structural patterns of 
proteins.   
Recently, the rules based on decision tree algorithms have 
been effectively extracted from a thermodynamic data-
base of proteins and mutants to explore potential knowl-
edge of protein stability prediction [29]. The performance 
of decision trees is better than the other methods for pre-
dicting changes of protein stability on a thermodynamic 
dataset consisting of 1615 mutants [30]. The results of the 
experiments for protein structure prediction show that 
the rules extracted by decision trees have meaningful bio-
logical interpretation and their comprehensibility is better 
than that of other methods [31].  

Most rules extracted by the presented approach have sig-
nificant and meaningful biological interpretation. As seen, 
the presence of specific amino acids improves the confi-
dence of the secondary structure prediction. This could be 
interpreted as the confidences of the existence of a secon-
dary structure pattern due to the presence of a particular 
amino acid pattern in the neighbourhood. After assign-
ment of secondary structures, structural classes can be 
assigned to domains that provide an excellent source for 
further analysis. Structural classes divide proteins accord-
ing to secondary structure content and organization. 
Amino acids and structural patterns based on type III 
rules can be extended for domains with predominantly -
helices or -sheets.  
The inspection of the prediction rules has offered interest-
ing new insights into stabilizing -helix, -strand, and coil 
structures. Our results concur with the findings of Lyu et 
al. that amino acid L (Leu) tend to be helix stabilizing.34 

The preferences for amino acids T (Thr), R (Arg), and G 
(Gly) in -strand prediction rules indicate their role in 
breaking the regular structure of the strands [28]. The 
rules of prediction of coils confirm that the most influen-
tial amino acids (the affecters) in coils are P (Pro) and G 
(Gly) [28]. The analysis of the prediction rules also shows 
that the neighbouring residues could have a profound 
effect on the preference of certain amino acids adopting -
helix, -strand, and coil structures. Recently, the rule-
extraction method of He et al. uses one-stage of binary 
SVM, which is unable to capture contextual relationships 
among the secondary structures. Therefore, the rules for 

-strand prediction were less than 90% confidence on 
RS126 dataset [17]. 
Furthermore, these rules could be useful for guiding bio-
logical experiments aimed at satisfying the sequence con-
ditions to produce a certain protein structure.  There are 
several proteins that bind to membranes via a small am-
phipathic helix with one face made of hydrophobic resi-
dues [32]. In the study of Mad1 and mSin3A interaction, 
Eilers et al. determined that the hydrophobic face of 
amphipathic alpha-helical structure makes key contacts 
with mSin3A [33]. With our protein secondary structure 
prediction, the amphiphilicity of the predicted helix can 
be inferred by calculating the helix hydrophobic  moment 
[34]. 
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