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This letter discusses the competitive layer model (CLM) for a class of
discrete-time recurrent neural networks with linear threshold (LT) neu-
rons. It first addresses the boundedness, global attractivity, and complete
stability of the networks. Two theorems are then presented for the net-
works to have CLM property. We also present the analysis for network
dynamics, which performs a column winner-take-all behavior and group-
ing selection among different layers. Furthermore, we propose a novel
synchronous CLM iteration method, which has similar performance and
storage allocation but faster convergence compared with the previous
asynchronous CLM iteration method (Wersing, Steil, & Ritter, 2001). Ex-
amples and simulation results are used to illustrate the developed theory,
the comparison between two CLM iteration methods, and the application
in image segmentation.

1 Introduction

Perceptual grouping, which can be defined as the ability to detect structural
layout of visual objects by human being, was first studied in the 1920s by
the Gestalt school of psychology (Koffka, 1962). One of its important the-
ories is the Gestalt law, and some Gestalt laws, like proximity, symmetry,
and continuity, were used to explain how humans detect groups in a set
of objects. In computer vision, this grouping mechanism can be considered
a procedure for feature binding, which aims at binding some related fea-
tures into common groups, so as to separate those groups originating from
different features (von der Malsburg, 1981, 1995).

The competitive layer model (CLM) was first advocated as a model
for spatial feature binding by Ritter (1990; Ontrup & Ritter, 1998). This
model is based on a combination of competitive and cooperative processes
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in a recurrent neural network architecture, which can partition a set of
input features into salient groups. Due to competitive interactions among
layers, each feature is unambiguously assigned to one layer, and feature
binding is achieved by a collection of competitive layers. Wersing, Steil,
and Ritter (2001) designed a continuous-time CLM neural network with
linear threshold (LT) neurons for feature binding and sensory segmentation.
Weng, Wersing, Steil, and Ritter (2006) proposed a hybrid learning method
based on CLM.

In recent years, many researchers have studied the recurrent neural net-
works with LT neurons (Hahnloser, Sarpeshkar, Mahowald, Douglas, &
Seung, 2000; Tang, Tan, & Zhang, 2005). One important property of LT net-
works is their multistability (Hahnloser, 1998; Yi, Tan, & Lee, 2003; Yi &
Tan, 2004; Zhang, Yi, & Yu, 2008; Zhang, Yi, Zhang, & Heng, 2009). The
traditional winner-take-all (WTA) neural networks are almost monostable,
and only one neuron among all neurons can be the final “winner”. The
multistability property provides an interesting way to mediate the WTA
competition between groups of neurons, and the final winner will be a
group of neurons. Hahnloser, Sebastian, and Slotine (2003) denoted the
group winner as a permitted set (more details about permitted set can been
found in Xie, Hahnloser, & Seung, 2002).

Compared with continuous-time neural networks, discrete-time neural
networks have some advantages for direct computer simulations and imple-
mentation in digital hardware. Unfortunately, the analysis of continuous-
time recurrent neural networks is not always applicable to the discrete
version. Thus, the detailed analysis of discrete version is necessary and
important. To the best of our knowledge, almost all studies of the discrete-
time neural network models have focused on the behavior of monostable
networks (Jin, Nikiforuk, & Gupta, 1994; Si & Michel, 1995; Hu & Wang,
2002; Wang & Xu, 2006), and only a small amount of work has been done
on multistable networks (Yi & Tan, 2004; Yi, Heng, & Fung, 2000; Zhang
et al., 2009). Furthermore, little attention has been paid to WTA competition
between groups of neurons, so our work can be seen as an attempt to cope
with it.

In this letter, we propose a class of discrete-time recurrent neural net-
works with LT neurons based on competitive layer model (CLM-DT-LT-
RNNs). In addition to deriving stability criteria, we prove that all stable
attractors are potential group winners. We also present some dynamic prop-
erties analysis. Based on the convergence theory noted in Feng (1997), an
asynchronous CLM (ACLM) iteration method was used in Wersing et al.
(2001) and Weng et al. (2006). Because the network updates only one neu-
ron each time, this makes the iterations time-consuming, especially for a
large-scale network. In this letter, we propose a novel synchronous CLM
(SCLM) iteration method. Compared with the ACLM iteration method, our
method has similar performance and storage allocation, but its simulations
are faster.
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Figure 1: The competitive layer model architecture.

The rest of this letter is organized as follows. The architecture of the pro-
posed discrete-time CLM networks is described in section 2. Preliminaries
are given in section 3. In section 4, a theoretical analysis of such networks is
given, which explores: boundedness, attractivity, complete stability, equi-
librium properties, dynamic properties analysis, and comparison between
the SCLM method and the ACLM method. Simulations and illustrative
examples are presented in section 5. Conclusions are given in section 6.

2 Competitive Layer Model of Discrete-Time Recurrent Neural
Networks with LT Neurons

In this letter, we study a class of discrete-time recurrent neural networks
with LT neurons based on the competitive layer model (CLM-DT-LT-RNNs),
which is described as

xiα(k + 1) = 1
C

⎡
⎣h J − J

l∑
β=1

σ (xiβ (k)) +
n∑

j=1

fi jσ (xjα(k))

⎤
⎦ + σ (xiα(k))

(2.1)

for k ≥ 0, i = 1, . . . , n, and α = 1, . . . , l. The CLM, equation 2.1, consists
of a set of l layers of feature-selective neurons, and each layer contains
n neurons (see Figure 1). J and fij are the vertical WTA interaction and
lateral interaction, respectively. Here, fi j = f ji , for i, j = 1, . . . , n. xiα is the
activity of a neuron at position i in layer α, and a column i denotes the set
of neuron activities xiα , α = 1, . . . , l, that share a common position i in each
layer. All neurons in a column i are equally driven by an external input
h, and h is fed to the activities xiα with a connection weight equal to J for
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simplicity. The LT function σ is defined as σ (x) = max(0, x), x ∈ �, which
is continuous, unbounded, and nondifferentiable. For vector x ∈ �n, we
denote σ (x) = (σ (x1), σ (x2), . . . , σ (xn))T ∈ �n.

Now the equivalent vector form of network 2.1 can be defined as

x(k + 1) = Wσ (x(k)) + H (2.2)

for k ≥ 0, x(k) = [x11(k), x21(k), . . . , xn1(k), . . . , x1l (k), x2l (k), . . . , xnl (k)]T , and
W = (wi j )nl×nl is a real symmetric matrix. Each element wij denotes the
synaptic weights and represents the strength of the synaptic connection
from neuron i to neuron j. H ∈ �nl denotes external input, and Hiα = h J

C for
i = 1, . . . , n and α = 1, . . . , l.

Furthermore, we define

W = G + I dnl , (2.3)

G = 1
C

[ f ⊗ I dl − J · �l ⊗ I dn] = 1
C

F − J
C

P, (2.4)

where ⊗ is a Kronecker product (Horn & Johnson, 1985), Idm is the m × m
identity matrix (here m = nl, n, or l), �l is an l × l matrix of 1’s, f = ( fi j )nl×nl ,
F = f ⊗ I dl , and P = �l ⊗ I dn.

Note that the CLM has two types of connections: the vertical interaction
J and the lateral interaction f within layers. In real applications, f may be
the proximity interaction used for clustering or the continuity interaction
used for finding continuous curves (Wersing et al., 2001). In our image
segmentation examples, we store the pixel-related information based on
gray and position relationships in f. The purpose of the CLM architecture
is to enforce a dynamical assignment of the input features to the layers
by using the contextual information stored in f. This assignment can be
considered feature binding. More discussion about these properties can be
found in section 4.

3 Preliminaries

In this section, we provide preliminaries used to establish our theory.

Definition 1. The network, equation 2.1, is said to be bounded if each trajectory
is bounded.

Definition 2. Let S be a compact subset of equation 2.1. We denote the ε-
neighborhood of S by Sε . The compact set S is said to globally attract network
2.1 if for any ε ≥ 0, all trajectories of the equation ultimately enter and remain in
Sε . The set S is called an attractive set.
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Obviously, if every trajectory x(k) of equation 2.1 satisfies⎧⎨
⎩

lim
k→+∞

sup x(k) ∈ S

lim
k→+∞

inf x(k) ∈ S
,

then S globally attracts the network 2.1.

Definition 3. A vector x∗ is called an equilibrium point (fixed point) of equation
2.1 if it satisfies x∗ = Wσ (x∗) + H. Denote by � to the set of equilibrium points
of equation 2.1.

Definition 4. An equilibrium point x∗ is said to be stable (in the sense of Lyapunov)
if the following statement is true: for every ε > 0, there exists δ > 0 such that every
solution x(k) with

∥∥x(0) − x∗∥∥ < δ exists for all k ≥ 0 and satisfies the inequality∥∥x(k) − x∗∥∥ < ε for k ≥ 0. The norm ‖·‖ is an arbitrary norm in �n or Cn. And
an equilibrium point x∗ is called unstable if it is not stable.

Definition 5. Network 2.1 is said to be completely convergent (completely stable),
if each trajectory x(k) satisfies dist(x(k),�)	= minx∗∈� ‖x(k) − x∗‖ → 0 as k →
+∞.

Definition 6. A neuron is said to be activated if its activity is positive. And a
column of CLM is said to be activated if there exists at least one activated neuron
in this column.

Definition 7. Let A ∈ �m×n. For index sets α ⊆ {1, . . . , m} and β ⊆ {1, . . . , n},
we denote the (sub)matrix that lies in the rows of A indexed by α and the columns
indexed by β as A(α, β). If m = n and β = α, the submatrix A(α, α) is called a
principal submatrix of A and is abbreviated A(α).

Lemma 1 (Yi & Tan, 2004). Suppose network 2.1 is bounded. If there exists a
diagonal positive-definite matrix D such that D(I + W) is a symmetric positive-
definite matrix, then network 2.1 is completely stable.

Lemma 2 (Horn & Johnson, 1985). Let A ∈ �n×n be Hermitian and A′ be a prin-
cipal submatrix A(n − 1) of A, and let the eigenvalues {λi (A)} of A, {λi (A(n − 1))}
of A(n − 1) be arranged in an increasing order. Then the eigenvalues of A′ interlace
the eigenvalues of A: λ1(A) ≤ λ1(A(n − 1)) ≤ λ2(A) ≤ · · · ≤ λn−1(A(n − 1)) ≤
λn(A).

Lemma 3 (Horn & Johnson, 1985). Let A, B ∈ �n×n be Hermitian, and let the
eigenvalues {λi (A)} of A, {λi (B)} of B, and {λi (A+ B)} of A+B be arranged in
increasing order. For each k = 1, . . . , n, we have λk(A) + λ1(B) ≤ λk(A+ B) ≤
λk(A) + λn(B).
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Throughout this letter, for all constant c ∈ �, denote c+ = max(0, c), c− =
min(0, c). For any matrix A = (ai j )n×m, we denote A+ = (a+

i j ), where a+
i j =

max(0, ai j ). We also note that f has eigenvalues λi ( f ) or λi , 1 ≤ i ≤ n, and
λmin( f ), λmax( f ) are the minimal eigenvalue and the maximal eigenvalue of
f, respectively.

Lemma 4. Let G� be a principal submatrix of G. Suppose f is a positive-definite
matrix and J > max1≤i≤n{λi }. Then G� must have no zero eigenvalues.

Since each LT neuron is either active or inactive, the whole ensemble of
the LT neurons in the equilibrium state can be divided into two partitions
with state x∗

iα > 0 for iα ∈ P and x∗
iα ≤ 0 for iα ∈ N, where P and N are both

index sets and P ∪ N = {11, 12, ..., 1l, ..., n1, n2..., nl}.

4 Theoretical Analysis of CLM-DT-LT-RNNs

4.1 Properties of CLM-DT-LT-RNNs. In this section, conditions guar-
anteeing boundedness and complete stability of network 2.1 are presented
in theorems 1 and 2, respectively. We also present a necessary condition in
theorem 3 to let our networks have CLM phenomena. Furthermore, a suf-
ficient and necessary condition for CLM phenomena is given in theorem 4.

Theorem 1. If there exist constants J and C such that{
J > max 1≤i≤n{∑ n

j=1 f +
i j }

C > J , then network 2.1 is bounded, and the compact set

S = {x | a ≤ xiα ≤ b, 1 ≤ i ≤ n, 1 ≤ α ≤ l} globally attracts network 2.1 where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b = 1
1 − γ

· h J
C

a = min
1≤i≤n

⎧⎨
⎩

1
C

n∑
j=1

f −
i j · b

⎫⎬
⎭

γ = max
1≤i≤n

⎧⎨
⎩

1
C

⎛
⎝C − J +

n∑
j=1

f +
i j

⎞
⎠

⎫⎬
⎭ .

.

Proof. By using the method in Yi and Tan (2004), the boundedness condi-
tions and the compact set S can be easily obtained. The proof is completed.

Theorem 2. Suppose network 2.1 is bounded and matrix f is symmetric. If there

exist constants J and C such that
{ J > max{max1≤i≤n{∑ n

j=1 f +
i j }, 1

l max1≤i≤n{|λi |}}
C > J l , then

network 2.1 is completely convergent.
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Proof. From equations 2.3 and 2.4, an orthonormal eigenvector basis
{Viβ,
iβ} for W can be obtained from the orthonormal eigenvector bases
{bi , λi } and {qβ, μβ} for f and �l respectively (Wersing et al., 2001):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Vi1 = 1√
l

(
bT

i , . . . , bT
i

)T
, 
i1 = 1

C
(λi − J l) + 1

Viβ �=1 =
⎛
⎝

√√√√ l∑
α=1

(
qβ �=1

α

)2

⎞
⎠

− 1
2

· (
qβ �=1

1 bT
i , ..., qβ �=1

l bT
i

)T
,


iβ �=1 = 1
C λi + 1

, (4.1)

where i = 1, . . . , n and β = 1, . . . , l.
Since J > 1

l max1≤i≤n{|λi |} and C > J l, by equation 4.1, we have

{
−1 < 
i1 < 1


iβ �=1 > 0
. (4.2)

Clearly it holds that 
iβ + 1 > 0 for all i, β. By lemma 1, the network is
convergent.

Theorem 3. Suppose network 2.1 satisfies theorem 2. If the lateral interaction is
self-excitatory, fii > 0 for all i, then a stable equilibrium of CLM in network 2.1
has in each column i at most one activated neuron x∗

iα with

∑
jα∈P

fi j x∗
jα ≥

∑
jβ∈P

fi j x∗
jβ �=α.

Proof. Now assume the contrary. Let x∗ be a stable equilibrium with at least
two neurons in a column i at two layers: x∗

iα > 0 and x∗
iβ > 0. Then at x∗, we

have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∗
iα = 1

C

⎡
⎣h J − J (x∗

iα + x∗
iβ ) + fii x∗

iα − J
l∑

γ �=α,β

σ (x∗
iγ )

+
n∑

j �=i
fi jσ (x∗

jα)

]
+ x∗

iα

x∗
iβ = 1

C

⎡
⎣h J − J (x∗

iα + x∗
iβ ) + fii x∗

iβ − J
l∑

γ �=α,β

σ (x∗
iγ )

+
n∑

j �=i
fi jσ (x∗

jβ )

]
+ x∗

iβ

.
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The coefficient matrix of x∗
iα, x∗

iβ is

Hαβ =
[

− J − fii
C − J

C

− J
C − J − fii

C

]
+

[
1 0

0 1

]
= Wαβ + I d2.

Because |Wαβ | = fii
C ( fii

C − 2J
C ) < 0, it shows that one eigenvalue of Hαβ is

larger than 1. So x∗ cannot be a stable equilibrium for the system.
Furthermore, if there exists only an activated neuron x∗

iα in column i, it
holds that∑

jα∈P

fi j x∗
jα ≥

∑
jβ∈P

fi j x∗
jβ .

Theorem 4. Suppose network 2.1 satisfies theorem 3. If there exists constant
h > 0, then the equilibrium has at least one activated column.

Proof. By contradiction, assume no activated neuron. Then x∗ ≤ 0 and
σ (x∗) = 0, and it follows from equation 2.2 that x∗ = Wσ (x∗) + H = H > 0.

4.2 Dynamic Properties of CLM-DT-LT-RNNs. Below we discuss the
dynamic properties of CLM-DT-LT-RNNs, which also helps for understand-
ing the ACLM method set out in section 4.3.

Note that for G being invertible, network 2.1 is dynamically equivalent to

ziα(k + 1) = σ

⎛
⎝ 1

C

⎡
⎣h J − J

l∑
β=1

ziβ (k) +
n∑

j=1

f i j z jα(k)

⎤
⎦ + ziα(k)

⎞
⎠ (4.3)

by the transformation ziα(k) = σ (xiα(k)). For simplicity, we use network 4.3
to study the dynamic properties of network 2.1 and assume that network
4.3 satisfies theorem 4, W has no eigenvalue 1, and I dnl − W is nonsingular.
Apart from the constraint of the LT function, network 4.3 is similar to a
linear dynamics, where ziα(k) ≥ 0 for all i, α:

z(k + 1) = Wz(k) + H. (4.4)

Therefore, we use the linear system eigensubspace analysis of network 4.4
as an indirect measure to study the dynamic of network 4.3. By inspecting
the change of z(k) on the zero boundary step by step in network 4.4, we
try to find the possible or necessary conditions for the stable equilibria of
network 4.3.

By equation 4.1, the eigenmodes of linear system 4.4 can be divided into
two classes: DC-subspace, which is spanned by the eigenmodes

Vi1 = 1√
l

(
bT

i , . . . , bT
i

)T
, 
i1 = 1

C
(λi − J l) + 1,
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and AC-subspace, which is spanned by the remaining eigenmodes,

Viβ �=1 =
⎛
⎝

√√√√ l∑
α=1

(
qβ �=1

α

)2

⎞
⎠

− 1
2

· (
qβ �=1

1 bT
i , . . . , qβ �=1

l bT
i

)T
,


iβ �=1 = 1
C

λi + 1,

where i = 1, . . . , n and β = 1, . . . , l.
We denote that z∗

0 is the fixed point of linear system 4.4. Because there
exists at least one 
iβ �=1 > 1, z∗

0 is unstable for both networks 4.3 and 4.4.
Therefore, the possible stable equilibria of network 4.3 can exist only on the
zero boundary.

In DC-subspace, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
l

l∑
β=1

z1β (k + 1)

...
1
l

l∑
β=1

znβ (k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= WDC

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
l

l∑
β=1

z1β (k)

...
1
l

l∑
β=1

znβ (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

− J h
C

⎡
⎢⎣

1
...
1

⎤
⎥⎦ , (4.5)

where WDC = 1
C f + (1 − J l

C )I dn. By equation 4.2, |
i1| < 1. Then we can get

(
zDC (k + 1) − z∗

DC

)T · (
zDC (k + 1) − z∗

DC

)
≤ (

zDC (k) − z∗
DC

)T · (
zDC (k) − z∗

DC

) , (4.6)

where zDC (k + 1) = [ 1
l

∑l
β=1 z1β (k + 1), . . . , 1

l

∑l
β=1 znβ (k + 1)]T for k ≥ 0,

and z∗
DC is the fixed point of equation 4.5. We denote that (z∗

DC )i is the
ith component of z∗

DC , and the relationship between z∗
DC and z∗

0 is described
as z∗

0 = (z∗
DC , z∗

DC , . . . , z∗
DC )T .

On the other hand, from equation 4.4, we can find z(k) in AC-subspace
that

n∑
i=1

l∑
α=1

⎛
⎝ziα(k + 1) − 1

l

l∑
β=1

ziβ (k + 1)

⎞
⎠

2

≥
n∑

i=1

l∑
α=1

⎛
⎝ziα(k) − 1

l

l∑
β=1

ziβ (k)

⎞
⎠

2

, (4.7)

where “=” holds only for the unstable equilibrium z∗
0.
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By equations 4.6 and 4.7, four states can exist for neuron activities at the
kth step:

State I:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
l

l∑
β=1

ziβ (k + 1) >
1
l

l∑
β=1

ziβ (k)

1
l

l∑
β=1

ziβ (k) < (z∗
DC )i

State II:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
l

l∑
β=1

ziβ (k + 1) <
1
l

l∑
β=1

ziβ (k)

1
l

l∑
β=1

ziβ (k) > (z∗
DC )i

State III:

1
l

l∑
β=1

ziβ (k) = (z∗
DC )i

and State IV:

l∑
β=1

ziβ (k + 1) =
l∑

β=1

ziβ (k) = 0.

For network 4.3, at a stable equilibrium, the trajectory at step k must hold
that

1
l

l∑
β=1

σ (ziβ (k + 1)) = 1
l

l∑
β=1

ziβ (k). (4.8)

Because state I cannot satisfy equation 4.8, the trajectory cannot get to a
steady state at the kth step under state I. For state III, by theorem 4, the
trajectory may move to and stay at the zero boundary. And if the trajectory
crosses the zero boundary, the current state may convert to other states.
Therefore, at the kth step, a trajectory will arrive at a steady equilibrium in
two ways: (1) all neurons are under state II; (2) some neurons are under the
state II, and others are under those states except for the state I.

A sketch of the initial CLM dynamic referring to our eigensubspace
analysis and three states is depicted in Figure 2. Here, z′

i (k + 1) is
the iteration solution at the kth step for network 4.4, while zi (k + 1) is the



CLM of Discrete-Time RNNs with LT Neurons 2147

Figure 2: Discrete-time CLM dynamics for two layers. Shown are activity tra-
jectories states for two activities zi1, zi2 of a single column i. Here denote
zi (k) = (zi1(k), zi2(k))T , (z∗

0)i = ((z∗
DC )i1, (z∗

DC )i2))T , and z∗
i = (z∗

i1, z∗
i2)T . z′(k + 1)

and z(k + 1) are the components of the solution for linear system 4.4 and non-
linear system 4.3 at step k + 1, respectively.

corresponding solution for network 4.3 affected by nonlinear function σ .
When ziα(k), ziα(k + 1) ≥ 0 for all i, α, the trajectories of two networks are
the same. If some neurons’ activities reach or cross the zero boundary to a
negative area, they no longer contribute to the nonlinear system 4.3, and
their value in the corresponding network 4.4 is set as zero. Therefore, we
can study the trajectory of network 4.3 in Rnl

+ step by step with the similar-
ity of two networks. Furthermore, if we choose 0 < ziα(0) � h, J L � λi ( f ),
then the trajectory will first go to the affine subspace passed though (z∗

0)
and approach the boundary along the affine subspace, which is similar to
the description in Wersing et al. (2001).

4.3 Comparison Between the SCLM Method and the ACLM Method.
In Wersing et al. (2001), an asynchronous CLM (ACLM) method comes from
a continuous-time CLM neural network, which can be described as

·
yiα(t) = −yiα(t) + σ

⎛
⎝J h − J

l∑
β=1

yiβ (t) +
n∑

j=1

fi j yjα(t) + yiα(t)

⎞
⎠ . (4.9)

For networks 4.9 and 4.3, with the same h, J, their equilibria are in the same
solution space. Furthermore, if f is a positive-definite matrix, then they have
the same equilibria.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00004-Zhou&iName=master.img-001.jpg&w=194&h=162
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Here, we give a novel synchronous CLM (SCLM) method based on
network 3.4 to implement the CLM dynamic, which can be found in ap-
pendix B. Because the weight W always needs an enormous amount of
memory, it is impossible to directly simulate a large network 4.3 on a PC.
For example, if the feature number is 10,000, the layer number is 10, and
the computer needs 2 bytes to store one data point, then the storage for
W is (10,000 × 10 × 2)2/(1024)3 � 37.25 GB. The SCLM method can greatly
decrease the storage requirements. For the previous example, we do not
need to store W but we do need to store f and �l (here l = 10), which
occupy (10,000 ∗ 2)2/(1024)2 � 381.47 MB and (10 ∗ 2)2/1024 � 0.39 KB, re-
spectively (here 1 GB = 1024 MB = 10242 KB). On the other hand, the
ACLM method mainly needs to store f. Therefore, both the SCLM and the
ACLM methods have similar memory requirements. But the synchronous
update mode can significantly improve CLM efficiency. (See the compari-
son table of two CLM methods in example 4.) It turns out that the SCLM
method is always about 90 times faster than the ACLM method with 10,000
features and 10 layers.

Theorem 5. Suppose network 3.4 satisfies theorem 2. If f is a positive-definite
matrix and constant h > 0, then the equilibrium points of network 3.4 have some
properties such as:

(i) For any x∗ ∈ �, there must exist at least one activated neuron.
(ii) If more than one activated neuron exist in a columns, then their outputs are

equal.

Proof. Here we need only to prove property ii. Let x∗ = [x∗
�, x∗

z ]T , where
x∗

z is the inactive neurons set, and x∗
� = [x∗

�11
, x∗

�12
, . . . , x∗

�1d1
, . . . , x∗

�n1
,

x∗
�n2

, . . . , x∗
�ndn

]T , where the index �iα ∈ P ,
⋃di

α=1 {x∗
�iα

} = {x∗
iα|x∗

iα > 0} and
di is the total element number of the set {x∗

iα|x∗
iα > 0} for i = 1, . . . , n, and

α = 1, . . . , l.
Now we can rewrite equation 2.2 in the equilibrium state by

x∗ =
[

x∗
�

x∗
z

]
=

[
W� W1

W2 W3

]
σ

([
x∗

�

x∗
z

])
+

[
H�

Hz

]
, (4.10)

where W� , W1, W2, W3 are the submatrices of W and H� and Hz are the part
of H according to the transform. Clearly W� is a principal submatrix of W.

From equation 4.11 in an equilibrium point state, it holds that

{
x∗

� = W�x∗
� + H� > 0

x∗
z = W2x∗

� + Hz ≤ 0
. (4.11)
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From equations 2.3, 2.4, A.1, and 4.11, we have

G�x∗
� = −H�. (4.12)

By lemma 4, G� has no zero eigenvalues, so equation 4.12 has only one
solution. On the other hand, by observing W� , we can find that if more
neurons coactivate in a column at the equilibrium state, the solution that
satisfies property (ii) can be one of possible solutions. Therefore, the unique
solution must satisfy this property. Furthermore, if this solution cannot
satisfy equation 4.11, there is no equilibrium under such condition.

By theorem 5, if networks 4.3 and 4.9 satisfy theorem 5 and have the
same h, J, their equilibria all satisfy equations 4.11 and 4.12. Because there
is only one solution for equation 2.16, the solution set is unique. Therefore,
both networks have the same equilibria.

5 Simulations

In this section, we provide simulation results to illustrate and verify the
theory developed. All programs were coded in Matlab 2008a and were run
on a PC with 1 Intel i7 920@2.67 GHz CPU, 6 GB RAM, and Windows Vista
Ultimate Service Pack 1 64-bit operating system. Theorems 1 and 2 can be
looked at as special cases in Yi and Tan (2004), so we skip the simulations
for these two theorems.

Example 1. Consider a CLM neural network with three layers with four
neurons in each layer,

x(k + 1) = Wσ (x(k)) + H, (5.1)

where W = 1
C [ f ⊗ I d3 − J · �3 ⊗ I d4] + I d12, H = J

C [1, 1, . . . , 1]T , J = 5,
C = 16, and

f =

⎡
⎢⎢⎣

0.21 0.01 0.02 −0.03
0.01 0.21 0.03 −0.04
0.02 0.03 0.16 −0.05

−0.03 −0.04 −0.05 0.31

⎤
⎥⎥⎦ .

Network 5.1 satisfies theorem 4. With initial condition x(0) =
[0.0762 0.0474 0.0484 0.1706 0.0757 0.1354 0.0377 0.1745 0.0946 0.2150
0.2134 0.1484]T , Figure 3 shows the convergence result of the trajectory. This
network displays a column WTA behavior, and only one neuron in a column
is activated in the stable state x∗ = [−0.0177 −0.0191 −0.0171 1.0661
−0.0157 −0.0164 −0.0137 −0.0207 1.05041.0526 1.0439 − 0.0285]T . Note
that two group winners can be found: {x41} in layer 1 and {x13, x23, x33} in
layer 3.
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Figure 3: Trajectory of network 5.1 in four columns. A column WTA behavior
can be observed.

Example 2. Consider network 5.1 in example 1, and set H =
− J

C [10, 10, . . . , 10]T . Clearly, network 5.1 satisfies theorem 3, and there is
no activated column in this network.

Example 3. Consider a CLM neural network with two layers with two
neurons in each layer,

z(k + 1) = σ (Wz(k) + H), (5.2)

where W = 1
C [ f ⊗ I d2 − J · �2 ⊗ I d2] + I d4, H = J

C [1, 1, . . . , 1]T , J = 2.25,

C = 5, and f = [ 1 −0.5
−0.5 1 ]. We use a continuous-time CLM neural network

for comparison:

·
yiα(t) = −yiα(t) + σ

⎛
⎝J h − J

l∑
β=1

yiβ (t) +
n∑

j=1

fi j yjα(t) + yiα(t)

⎞
⎠ , (5.3)

where 1 ≤ i, α ≤ 2.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00004-Zhou&iName=master.img-002.jpg&w=306&h=243
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Both networks satisfy theorem 5. By simple calculations, we can know
five equilibria for them: x∗

1 = [1.8 0 0 1.8]T , x∗
2 = [0 1.8 1.8 0]T , x∗

3 =
[0 0 1.2857 1.2857]T , x∗

4 = [1.2857 1.2857 0 0]T , and x∗
5 = [0.5625 0.5625

0.5625 0.5625]T . Figure 4 shows the convergence of both networks for 100
trajectories originating from randomly selected initial points. We also add
the ACLM method for comparison. Clearly, x∗

1 , x∗
2 , x∗

3 , x∗
4 , are all stable, and

x∗
5 is unstable.

Example 4. In this example, we compare our SCLM method with the ACLM
method. f is defined in appendix C. Both methods are applied to a 100 × 100
picture for image segmentation. Here, the feature number 10,000 and the
layer number L = {5 10}. For each selected L, the test time is 10. Therefore,
there are 2 × 2 × 10 = 40 tests.

Here, we compare two methods in two aspects: iteration speed and
performance. For simplicity, we set the annealing temperature T = 0. Al-
though each method has a different energy function, we use a lateral con-
tribution energy function as an indirect measure to estimate the perfor-
mance. The lateral contribution energy function is described as EC L M =
−∑n

i=1
∑n

j=1
∑l

α=1 fi jζ
∗
iαζ ∗

jα, where ζ ∗
iα is defined for both methods by

ζ ∗
iα =

{
1, i f y∗

iα > 0 or z∗
iα > 0

0, i f y∗
iα ≤ 0 or z∗

iα ≤ 0
,

where y∗
iα , z∗

iα are the stable fixed points of networks 4.9 and 3.4, respec-
tively. In brief, for fixed n and l, the lower the energy value, the better the
performance.

Table 1 shows the comparison. From the table, it is hard to tell which
method performs better. This conclusion can also be derived from the sim-
ilarity of dynamics between continuous-time and discrete-time networks.
On the other hand, performance always depends on the initial value, f, and
some parameters, so the choice between the two methods in real applica-
tions is not unique. It can be observed that with more features and layers,
the ACLM method is more time-consuming. With the same conditions, our
method runs faster than the ACLM method. We also notice that for fixed N,
the ACLM method is more sensitive to layer number L than our method.
Figure 5 compares the image segmentation results for both methods.

Example 5. Here, the SCLM method is applied to 128 × 128 Lena pictures
for image segmentation. There are 16,384 total features and L = {3 6 9}
layers.

Figure 6 shows the image segmentation results. Here, the time and the en-
ergy for three layers are 1.9682 × 103 secs, and 3.8590 × 106, respectively. For
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Figure 4: Convergence results for different networks, with each stable fixed
point marked with an ellipse. (a, b) Convergence results for network 5.3. (c, d)
Convergence results for network 5.2. (e, f) Convergence results for network 5.2
using the ACLM method.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00004-Zhou&iName=master.img-003.jpg&w=299&h=453
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Figure 5: Image segmentation for 100 × 100 image. (a) Original image. (b) Image
segmented with 5 layers using the SCLM method. (c) Image segmented with
5 layers using the ACLM method. (d) Lateral contribution energies of two
methods. Here, we calculate ESCLM once per l iterative times, and calculate
EACLM once per n × l iterative times. (e) Image segmented with 10 layers using
SCLM method. (f) Image segmented with 10 layers using the ACLM method.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00004-Zhou&iName=master.img-004.jpg&w=251&h=433
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Figure 6: Image segmentation worked with a 128 × 128 Lena image using the
SCLM method. (a) Original image. (b) Image segmented with three layers.
(c) Image segmented with six layers. (d) Image segmented with nine layers.

six layers, they are 3.5139 × 103 secs, and −5.9667 × 106, respectively. For
nine layers, they are 4.8886 × 103 secs, and −6.3551 × 106, respectively.
Clearly, the image segmentation quality can be improved with more layers,
which decreases the lateral contribution energy as well.

6 Conclusion

In this letter, we investigate the competitive layer model for a class of
discrete-time recurrent neural networks with LT neurons. We first discuss
three basic dynamical problems: boundedness, global attractivity, and com-
plete stability. Then we present two theorems to let the networks have CLM

http://www.mitpressjournals.org/action/showImage?doi=10.1162/NECO_a_00004-Zhou&iName=master.img-005.jpg&w=275&h=320
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phenomena. In addition, we outline some dynamic properties analysis and
give a novel SCLM method, which has similar performance and storage
allocation but simulations are faster compared with the ACLM method.
Simulations have been carried out to validate the performance of our theo-
retical findings.

Considering current technical trends, multicore processor technology
significantly increases parallel processing capability compared with single-
core processing. Therefore, with the development of software and hardware
of parallel computation, the efficiency and speed of our SCLM method can
be improved in the future.

The method we have described may well be extended to other appli-
cations dealing with complex optimization problems. In essence, the CLM
can be looked at as an optimization method to search for a better feature-
grouping solution among those possible solutions. Therefore, the method
described here may be extended to other applications dealing with complex
optimization problems.

Appendix A: Proof of Lemma 4

According to equation 2.4, we define

G� = − J
C

P� + 1
C

F�, (A.1)

where P� , F� are the s × s principal submatrix of P, F respectively. Let
rank(P�), rank(P) be the rank of P� and P respectively, and rank(P�) = m.

Clearly, 1 ≤ m ≤ rank(P) = n. Since P� is a principal submatrix of P,
by lemma 2, the eigenvalues {λi (P�)} of P� satisfy (in increasing order)
λi (P�) ≤ λmax(P) = l, where i = 1, . . . , s and λmax(P) is the max eigenvalue
of P.

It can be proved that the eigenvalues {λi (P�)} satisfy{
λ1(P�) = λ2(P�) = · · · = λs−m(P�) = 0

1 ≤ λs−m+1(P�) ≤ · · · ≤ λs−1(P�) ≤ λs(P�) ≤ l
. (A.2)

Define A = − J
C

P� and B = 1
C

F� . Obviously, by equation A.2, the eigen-

values {λi (A)} of A satisfy⎧⎨
⎩− J l

C
≤ λ1(A) ≤ λ2(A) ≤ · · · ≤ λm(A) ≤ − J

C
λm+1(A) = λm+2(A) = · · · = λs(A) = 0

. (A.3)

By lemma 2, the eigenvalues {λi (B)} of B also satisfy

1
C

λmin( f ) ≤ λ1(B) ≤ λ2(B) ≤ · · · ≤ λs(B) ≤ 1
C

λmax( f ). (A.4)
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Since f is a positive-definite matrix and J > max1≤i≤n{λi }, by lemma 3
and equations A.3 and A.4, it holds that the eigenvalues {λi (G�)} of G�

satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1(G�) ≤ λ1(A) + λs(B) ≤ − J
C

+ 1
C

λmax( f ) < 0
...

λm(G�) ≤ λm(A) + λs(B) ≤ − J
C

+ 1
C

λmax( f ) < 0

λm+1(G�) ≥ λm+1(A) + λ1(B) ≥ 1
C

λmin( f ) > 0
...

λs(G�) ≥ λs(A) + λ1(B) ≥ 1
C

λmin( f ) > 0

.

Appendix B: SCLM Method

1. Initialize all ziα(0) with small random values around ziα(0) ∈
(0, 0 + ε]. Calculate λmax and λmin. Set J0 = max{ 1

l max{|λmax|, |λmin|},
max1≤i≤n{

∑n
j=1 f +

i j }}, J = 1.01 ∗ J0, C = 1.01 ∗ J l, τ = 1.01, τmax =
1.35, ρ = 0.001, ω = 1, ζ = 0.1, N1

X1(K+1) = 0, Nqueue = 0, N1
queue = 100,

T = λmax, ηT = 0.99, k = 0, h = 1,

EC = J
C

�l , Z(0) =

⎡
⎢⎣

z11(0) · · · z1l (0)
...

. . .
...

zn1(0) · · · znl (0)

⎤
⎥⎦

n×l

,

H0 =

⎡
⎢⎣

h · · · h
...

. . .
...

h · · · h

⎤
⎥⎦

n×l

, and

H = J
C

H0;

2. Calculate ξ = H + 1
C ∗ f ∗ Z(k) − 1

C ∗ T ∗ Z(k) − Z(k) ∗ EC + Z(k). If
mod(k + 1, l) == 0, then T = T ∗ ηT (without self-inhibitory anneal-
ing, set T = 0);

3. Set Z(k + 1) = max (ξ, 0). If ω == 1, then find NX(K+1), the number
of ziα(k + 1) == −1 in Z(k + 1). If NZ(K+1) < n, then Z(k) = Z(k + 1),
k = k + 1, go to Step 2; otherwise ω = 0, go to Step 4;

4. Calculate the error between Z(k) and Z(k + 1). If |ziα(k + 1) − ziα(k)| <

ρ for all i, α, then go to Step 5; otherwise Z(k) = Z(k + 1), k = k + 1,
go to Step 2;
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5. Find Z0(K + 1), here Z0(K + 1) = {ziα(k + 1) | ziα(k + 1) > ζ } for
all i, α. Set Z1(K + 1) = Z0(K + 1) − Mean(Z0(K + 1)), where
Mean(Z0(K + 1)) is the mean number of Z0(K + 1), then find NZ1(K+1),
the number of z1

iα(k + 1) > 0.1/n in Z1(k + 1). If NZ1(K+1) == 0, then
go to the end; otherwise go to Step 6;

6. If Nqueue == 0, then Nqueue = Nqueue + 1, N1
Z1(K+1) = NZ1(K+1), go to

Step 9; otherwise go to Step 7;
7. if N1

Z1(K+1) �= NZ1(K+1), then Nqueue = 0, N1
Z1(K+1) = NZ1(K+1), go to

Step 9; otherwise Nqueue = Nqueue + 1, Go to Step 8;
8. If Nqueue == N1

queue, then go to the end; otherwise go to Step 9;
9. Set J = J ∗ τ , τ = τ + 0.01, C = 1.01 ∗ J l, H = J

C H0, EC = J
C �l ,

Z(k) = Z(k + 1), k = k + 1. If τ < τmax, then go to Step 2; otherwise
go to the end.

Appendix C: Lateral Interaction for Image Segmentation

In this letter, the lateral interaction f is identical in all l layers and is sym-
metric:

fi j = �(φi, j ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.5, i == j
φi, j

max
1≤i ′, j ′≤n

{φi ′, j ′ } , i �= j, φi, j ≥ 0

φi, j

max
1≤i ′, j ′≤n

{−φi ′, j ′ } , i �= j, φi, j < 0

.

The compatibility φi, j between pixel P(ix, iy) and P( jx, jy) with gray-level
g(ix, iy) and g( jx, jy) is given by φi, j = m1e−ν/k1 (m2e−d/k2 + 1) − θ, where
v = |g(ix, iy) − g( jx, jy)| is the difference between the two gray-levels, d =√

(ix − jx)2 + (iy − jy)2 is the Euclidean distance of the two pixels, m1(> 0)
and m2(> 0) balance between the influence of v and d to φ, k1(>0) controls the
sharpness of v, k2(>0) controls the spatial range of d, and θ is the threshold.
The parameters used here are m1 = 2, m2 = 3, k1 = 100, k2 = 0.5, θ = 1.7.
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