
Convergence Analyses on Sparse Feedforward Neural

Networks via Group Lasso Regularization I

Jian Wanga,d,∗, Qingling Caib, Qingquan Changc, Jacek M. Zuradad,e

aCollege of Science, China University of Petroleum, Qingdao, 266580, China
bSchool of Engineering, Sun Yat-sen University, Guangzhou, 510275, China

cSchool of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China
dDepartment of Electrical and Computer Engineering, University of Louisville,

Louisville, KY, 40292, USA
eInformation Technology Institute, University of Social Sciences, Lódź 90-113, Poland

Abstract

In this paper, a new variant of feedforward neural networks has been proposed
for a class of nonsmooth optimization problems. The penalty term of the pre-
sented neural networks stems from the Group Lasso method which selects
hidden variables in a grouped manner. To deal with the non-differentiability
of the original penalty term (l1-l2 norm) and avoid oscillations, smoothing
techniques have been used to approximate the objective function. It is as-
sumed that the training samples are supplied to the networks in a specific
incremental way during training, that is, in each cycle samples are supplied
in a fixed order. Then, under suitable assumptions on learning rate, penaliza-
tion coefficients and smoothing parameters, the weak and strong convergence
of the training process for the smoothing neural networks have been proved.
The convergence analysis shows that the gradient of the smoothing error
function approaches zero and the weight sequence converges to a fixed point,
respectively. We demonstrate how the smoothing approximation parameter

IThis workwas supported in part by the National Natural Science Foundation of China
(No. 61305075), the China Postdoctoral Science Foundation (No. 2012M520624), the Nat-
ural Science Foundation of Shandong Province (No. ZR2013FQ004), the Specialized Re-
search Fund for the Doctoral Program of Higher Education of China (No. 20130133120014)
and the Fundamental Research Funds for the Central Universities (No. 13CX05016A,
14CX05042A, 15CX02079A, 15CX05053A, 15CX08011A).

∗Corresponding author
Email addresses: wangjiannl@upc.edu.cn (Jian Wang),

jacek.zurada@louisville.edu (Jacek M. Zurada)

Preprint submitted to Information Sciences October 14, 2016

*Manuscript (including abstract)
Click here to view linked References

http://ees.elsevier.com/ins/viewRCResults.aspx?pdf=1&docID=29587&rev=1&fileID=810363&msid={C7182A91-6648-48D4-AC44-649B76C2D3DE}

can be updated in the training procedure so as to guarantee the convergence
of the procedure to a Clarke stationary point of the original optimization
problem. In addition, we have proved that the original nonsmoothing algo-
rithm with l1 − l2 norm penalty converges consistently to the same optimum
solution with the corresponding smoothed algorithm. Numerical simulations
demonstrate the convergence and effectiveness of the proposed training algo-
rithm.

Keywords: Clarke gradient; Convergence; Feedforward neural networks;
Group Lasso; Non-differentiability.

1. Introduction

Artificial neural networks have been widely used in various applications,
such as pattern recognition, machine learning, data mining and signal pro-
cessing [37, 27, 24]. The feedforward networks are one of the most popular
architectures for their strong structural flexibility, good representation ability
and compatibility with different training algorithms.

A reasonable architecture is one of the key aspects to guarantee better
generalization of the trained neural networks [2]. Generally, the number of
neurons in the input and output layers is fixed and represents the attributes
and the target values of the dataset, respectively. Whereas the number of
neurons in the hidden layer (or layers) depends on the complexity of the
problem to be modeled, it is essential how to optimize the number of hidden
neurons.

Typically, there are two approaches to determine the number of hidden
neurons. One is the growing method, which starts with a small initial network
and then adds hidden neurons stepwise during training [58, 35, 39].

The other is a pruning way, which starts with a large initial network
and then removes the unnecessary neurons or weights [29, 40, 38, 56, 45, 1].
Researchers have developed a number of pruning algorithms to optimize net-
work architectures. An interesting comparative study for pruning algorithms
of neural networks has been presented in [2]. Based on the elimination tech-
niques, pruning methods could be categorized as penalty term methods, cross
validation methods [30], magnitude base methods [21], evolutionary prun-
ing methods [47], mutual information (MI) [18], significance based pruning
methods and sensitivity analysis (SA) method [3, 1]. This paper focuses on

2

pruning technique by using a novel penalty term for backpropagation (BP)
neural networks.

For standard networks, the error function is defined as the sum of the
squared errors

E =
1

2

∑

j

‖Outputj − Targetj‖2, (1)

where j represents the j-th sample of the dataset. When a network is to
be pruned, it is common to add a penalty term to the error function during
training

E =
1

2

∑

j

‖Outputj − Targetj‖2 + λφ(w). (2)

The penalty term is to suppress the unnecessary connections between neu-
rons. The parameter λ > 0 is the regularization coefficient, which balances
the relative importance of the penalty term and the pure error expression.

There are three typical regularization forms for feedforward networks:
weight decay [9, 26, 41, 45], weight elimination [40, 46, 34, 31] and approxi-
mate smoother [36, 15].

When the backpropagation method is employed to train the network,
uniform weight decay in [26] has a disadvantage that large weights are de-
caying at the same rate as small weights [22]. To remedy this problem,
the weight elimination method has been suggested in [46]. Unfortunately,
it does not distinguish between the large and very large weights [40]. The
approximate smoother [50] appears to be more accurate than weight decay
or weight elimination from the complexity point of view. It is designed for a
multilayer perceptron with a single hidden layer and a single output neuron.
However, it is more complicated than weight decay or weight elimination and
has additional computational cost [23].

We notice that the above penalty methods discourage specific connec-
tions among neurons. To improve the interpretability and sparsity of neural
networks, we will borrow the idea of Group Lasso to optimize the network
architecture in this paper.

Lasso, the “least absolute shrinkage and selection operator” was first pro-
posed for linear regression problem as a new technique that reduces some
coefficients and sets others to zero [44]. It has been popular for simultaneous
estimation and variable selection. However, lasso often results in selecting
more factors than necessary and the solution depends on how the factors
are represented. Then, a new version of the lasso, the adaptive lasso, was

3

proposed in [59] by employing adaptive weights with l1 penalty term. In
addition, it enjoys the oracle properties.

An extension of lasso known as Group Lasso has been developed in [57]
which selects the final models on the solution paths and encourages sparsity
at group level. The penalty function (l1-l2 norm) is intermediate between the
l1 penalty in lasso and the l2 penalty in ridge regression (weight decay). In
addition, a more general form, sparse Group Lasso, has been investigated in
[19] which blends the lasso with the Group Lasso. Its main advantage is that
it yields the sparse solutions at both the group and individual feature levels.

A novel idea of this paper is to replace the common penalty terms in [26]
with a Group Lasso counterpart for BP networks. We expect that this can
enhance some of the desirable properties of Group Lasso and improve the
pruning performance with better generalization.

For a multi-layer network, we denote by Wi the weight matrix connecting
the i-th and (i+ 1)-th layers. We suggest using the following expression

φ(w) =

nl−1∑

i=1

cli∑

l=1

∥∥∥w(i)
l

∥∥∥ , (3)

where nl is the number of layers, w
(i)
l is the l−th column vector of matrix

Wi, cli is the number of column vectors in matrix Wi. Thus the function of
the optimization problem for pruning the hidden layer can be formulated as
follows

E =
1

2

∑

j

∥∥Outputj − Targetj
∥∥2 + λ

nl−1∑

i=1

cli∑

l=1

∥∥∥w(i)
l

∥∥∥ , (4)

where ‖·‖ is the l2 norm (Euclidean). The above penalty term form is identi-
cal to the counterpart in Group Lasso, namely, the l1-l2 norm penalty, where
the norm of the weight vectors, ‖w

(i)
l ‖, is one of the components of the whole

weight matrices.
It is obvious that the penalty term of the above cost function (4) is not

differentiable at the origin. This may lead to difficulties for both theoretical
analysis and numerical simulations, especially when the norm of weight vector
is very close to zero, because the gradients of the objective function are
prerequisite for common BP networks [23]. Much attention has recently
been attracted on how to efficiently solve this problem [4, 33, 5, 12].

One of the popular effective solutions is to use the smoothing approximate
techniques for solving the nonsmooth optimization problems [20, 13, 14, 6].

4

By using the Clarke generalized gradient of the objective functions, a gen-
eralized nonlinear programming circuit was introduced in the framework of
nonsmooth analysis and the theory of differential inclusions [20]. To solve
the nonsmooth and nonconvex optimization problems in image restorations,
an improved smoothing nonlinear conjugate gradient method was suggested
in [14]. In [6], a smoothing quadratic regularization algorithm was then de-
veloped for solving a class of nonsmooth, nonconvex minimization problems,
which has been widely used in statistics and sparse reconstruction.

Two recent papers focused on nonconvex and nonsmooth penalization
methods of neural networks with smoothing approximate techniques [7, 8].
By adopting smooth techniques, a continuous network was established for
solving a non-Lipschitz optimization problem in [7]. Under the bounded
level set condition of the initial point, it was demonstrated that the uniform
boundedness of the solutions and the global convergence of the proposed
smoothing neural network. A novel smooth neural network was presented
in [8] that finds a Clarke stationary point of the non-smooth constrained
optimization problem. Some more attractive features of this study include
that it relaxed the restriction of the initial point to be in a feasible set and can
exactly specify the prior penalty parameters of the smooth neural network.

Inspired by the above smoothing approximate techniques, we replace the
original penalty term (l1-l2 norm) in (4) with smoothing ones. Consequently,
it is beneficial for both conquering the numerical oscillations and avoiding
the difficulties in theoretical analysis. One of the main topics of this paper
is to fill the gap and compare the convergence for the original non-smooth
methods and its smoothing counterparts.

According to different orders of sampling, there are mainly three in-
cremental learning approaches [25]: online learning (completely stochastic
order), almost-cyclic learning (special stochastic order) and cyclic learning
(fixed order). To be specific, in this paper we only implement the cyclic
mode.

The existing convergence results for online gradient method are mostly
asymptotic convergence with a probabilistic nature since the sampling order
is completely random [10, 43, 56]. The deterministic convergence of almost-
cyclic and cyclic learning has been presented with a similar proof in [49,
55, 48, 45], separately. We note that the almost-cyclic learning of BP neural
networks performs numerically better than the cyclic learning algorithm since
the stochastic nature survives in the almost-cyclic training process [32].

The aim of this paper is to present a comprehensive study on the weak

5

and strong convergence of the proposed smooth neural networks with cyclic
learning. We particularly show that the gradient of the cost function with
respect to weight vectors can approach zero and the weight updating sequence
can go to a fixed point, respectively. Moreover, the rigorous proofs will be
provided to ensure the convergence consistency between the smoothed neural
networks and the original neural networks in terms of the Clarke differential
theory.

The main contributions of this paper are as follows:
1) A novel penalty term has been presented as a part of the cost function

for BP network incremental training, which effectively prunes the connections
among neurons at group level.

We note that the penalty term borrows the idea from Group Lasso method
which is beneficial to eliminating the unnecessary weights at group level. This
essentially stems from the fact that the penalty term is the summation of the
l2 norm (not squared) of the weight vectors, i.e., all of the weights connecting
with the same neuron. The simulations in Section 5 shows the better pruning
performance of the proposed algorithm than those of the common BP neural
networks and BP algorithm with weight decay penalty (WDBP).

2) Smoothing techniques have been applied to approximate the penalty
term of the cost function instead of using the original nonsmooth penalty.

It is easy to know that the original proposed penalty term is non-differentiable
at the origin which may lead to the numerical oscillations and result in the
obstacle on theoretical analysis. The proposed smoothing techniques en-
courage the smooth weight updates and show sparse properties. In addition,
we provide an effective way of setting suitable smoothing parameters in the
training process to bridge the gap between the convergence analysis based
on the two different cost functions.

3) The weak and strong convergence of the proposed algorithm with smooth-
ing approximation have been proved under mild assumptions on learning pa-
rameters.

We show that the weak convergence indicates that the norm of the gra-
dients of the smooth cost function goes to zero, and the strong convergence
implies that the weight sequence tends to a fixed point (accumulation point).

4) By selecting reasonable smoothing parameters, the proved weak and
strong convergence for the proposed smoothing networks have been shown to
be consistent with those of the original networks.

For weak convergence, we prove that any accumulation point of weight
sequence is both the stationary point of the smoothed neural networks and

6

the Clarke stationary point of the original neural networks. Corresponding
to the strong convergence, a restricted proof shows that the weight updating
sequences converge to the same unique point as the iteration goes to infinity.

The rest of this paper is organized as follows. In the next section, we
present a smoothing approximate technique to induce the new training al-
gorithm for BP neural networks based on the use of smoothing l1 − l2 norm
penalty. In Section 3, we introduce the definitions of Clarke differential and
present the main convergence results. The rigorous proof of the results is
provided in Section 4. In Section 6, we conclude the research with some
useful remarks.

2. Algorithm Description

We consider a feedforward neural network with three layers. The numbers
of neurons for the input, hidden and output layers are p, n and q, respectively.
Suppose that the training sample set is {xj,yj}J−1

j=0 ⊂ Rp × Rq, where xj

and yj are the input and the corresponding ideal output of the j-th sample,
respectively. Let V = (vij)n×p be the weight matrix connecting the input and
hidden layers, and write vi = (vi1, vi2, ..., vip) for i = 1, 2, ..., n. The weight
matrix connecting the hidden and output layers is denoted by U = (uki)q×n.
Let urk = (uk1, uk2, ..., ukn) ∈ Rn and uci = (u1i, u2i, ..., uqi)

T ∈ Rq be the
k − th row vector and i − th column vector of weight matrix U, where k =
1, 2, ..., q and i = 1, 2, ..., n. To simplify the presentation, we combine the
weight matrix U and V, and write w = (ur1 , ...,urq ,v1, ...,vn) ∈ Rn(p+q).
Let g, f be the given activation functions for the hidden and output layers,
respectively.

For convenience, we introduce the following vector valued functions

G(z) = (g(z1), g(z2), ..., g(zn))
T , ∀z ∈ R

n, (5)

and
F (UG(Vxj))

=
(
f(ur1 ·G(Vxj)), · · · , f(urq ·G(Vxj))

)T
.

(6)

For any given input x ∈ Rp, the output of the hidden neurons is G(Vx).

7

For any fixed weights w, the error of the neural networks is defined as

E (w) =
1

2

J−1∑

j=0

(
∥∥F
(
UG

(
Vxj

))
− yj

∥∥2 + λ

(
q∑

k=1

‖urk‖+
n∑

i=1

‖vi‖

))

=
J−1∑

j=0

Fj

(
UG

(
Vxj

))
+

Jλ

2

(
q∑

k=1

‖urk‖+
n∑

i=1

‖vi‖

)
,

(7)

where Fj (UG (Vxj)) = 1
2

(
yj − F

(
UG

(
Vxj

)))2
, j = 0, 1, ..., J − 1. The

gradients of the error function with respect to urk and vi (when urk 6= 0 and
vi 6= 0) are, separately, given by

Eurk
=

J−1∑

j=0

(
f
(
urk ·G

(
Vxj

))
− yjk

)

× f ′
(
urk ·G

(
Vxj

))
G
(
Vxj

)T
+ Jλ

urk

‖urk‖
,

(8)

Evi
=

J−1∑

j=0

q∑

k=1

(
f
(
urk ·G

(
Vxj

))
− yjk

)

× f ′
(
urk ·G

(
Vxj

))
ukig

′
(
vi · x

j
)
(xj)T + Jλ

vi

‖ vi ‖
.

(9)

We denote that

Ew = (Eur1
, Eur2

, ..., Eurq
, Ev1 , Ev2 , ..., Evn

) (10)

We note that the group lasso penalty in (7) is an intermediate case of
the l1 norm penalty and the squared l2 penalty. From the mathematical
expression, it distinguishes the different weight vectors, however, it equally
evaluates the components of the same weight vector. This is the essential
reason that the built learning system may prune the weights at a group level.

It is easy to find that (7) is non-differentiable at the origin, which is
prone to oscillate the numerical simulations. To solve the problems caused
by the nonsmoothness, we will apply smoothing approximation method in
this paper. There are many different smooth functions that can be used to
approximate the l2 norm in the training process of BP neural networks. For
any finite dimensional vector z and a fixed positive constant α, we can define

8

a smoothing function of ‖z‖ as follows:

h(z, α) =





‖z‖, ‖z‖ > α.

‖z‖2

2α
+ α

2
, ‖z‖ ≤ α.

(11)

We notice that this function approximates h(z) = ‖z‖ closer and closer
as the parameter α approaches to zero. Therefore, we will apply (11) to
approximate the l2 norm of the penalty term in (7). In addition, the gradient
of h(z, α) with respect to vector z is

∇zh(z, α) =






z

‖z‖
, ‖ z ‖> α

z

α
, ‖ z ‖≤ α

(12)

The error function (7) can then be rewritten as

Ẽ(w) =
1

2

J−1∑

j=0

∥∥F (UG(Vxj))− yj
∥∥2

+
Jλ

2

(
q∑

k=1

h(urk , α) +
n∑

i=1

h(vi, α)

)
.

(13)

Based on (13), we construct a smoothing Group Lasso BP network (SGLBP)
as follows. Starting from an arbitrary initial guess w0, we proceed to refine
the weight sequence iteratively by the following formulae

umJ+j+1
rk

= umJ+j
rk

− ηm∇ju
mJ+j
rk

(14)

v
mJ+j+1
i = v

mJ+j
i − ηm∇jv

mJ+j
i , (15)

where ηm > 0 is the m-th cycle learning rate,

∇ju
mJ+j
rk

= Hm,j,jGm,j,j + λJ∇urk
h
(
umJ+j
rk

, αm

)
(16)

∇jv
mJ+j
i =

q∑

k=1

Hm,j,jumJ+j
ki g′

(
v
mJ+j
i xj

)
(xj)T

+ λJ∇vi
h
(
v
mJ+j
i , αm

)
,

(17)

9

Hm,l,j , (f
(
umJ+l
rk

·Gm,l,j
)
− yjk)f

′(umJ+l
rk

·Gm,l,j) (18)

Gm,l,j = G
(
VmJ+lxj

)T
(19)

and,

αm =
1

mβ
, m ∈ N, (20)

where 0 < β < 1
3
is a positive constant, l, j = 0, 1, · · · , J − 1. Then the

weight vectors are updated by

wmJ+j+1 = wmJ+j − ηm∇jw
mJ+j (21)

3. Main Results

In this section, we state the related definitions and main results of the
present paper. These definitions are referred to [42].

Definition 3.1. The directional derivative of f at x in the direction d is

f ′(x;d) = lim
t↓0

f(x+ td)− f(x)

t
. (22)

Definition 3.2. Let X be a Banach space, f be a locally Lipschitz continuous
function at x, and let d be any vector in X. The generalized directional
derivative of f at x in the direction d is

f o(x;d) = lim sup
t↓0
y→x

f(y + td)− f(y)

t
, (23)

where y is a vector in X and t is a positive scalar, and t ↓ 0 denotes that t
tends to zero monotonically and downward.

Definition 3.3. Let f(x) be locally Lipschitz at x. Then we say that the
generalized differential (or Clarke differential) of f at x is the set

∂f(x) = {ξ ∈ X∗ | f o(x;d) ≥ 〈ξ,d〉 ∀d ∈ X} (24)

The ξ is said to be a generalized gradient of f at x.

The norm ‖ξ‖∗ in conjugate space X is defined by

‖ξ‖ = sup{〈ξ, d〉 : d ∈ X, ‖d‖ ≤ 1}

10

Definition 3.4. A point x∗ is called a Clarke stationary point of f if for all
d,

f o(x∗; d) ≥ 0, (25)

i.e.,0 ∈ ∂f(x∗).

To analyze the convergence of the weight sequence (21) in the training
we make the following assumptions

(A1) The activation functions f and g are such that f ∈ C1(R) and g ∈ C1(R),
f , g, f ′ and g′ are uniformly bounded on R. And f ′ and g′ are local
Lipschitz functions.

(A2) The learning rate ηm satisfies that ηm = O(1
mτ), where

2
3
≤ τ ≤ 1.

(A3) All of Clarke stationary points of the error function (7) are isolated.

(A4) There is a bounded open set Ω ⊂ Rn(p+q) such that {wm} ⊂ Ω (m ∈ N).

Our main results are as follows:

Theorem 3.1. (Weak Convergence) Suppose that the assumptions (A1),
(A2) and (A4) are valid. Then the weight sequence {wm} generated by (14)
and (15) is weakly convergent in the sense that

lim
m→∞

‖Ẽw(w
m)‖ = 0, m ∈ N, (26)

where Ẽw(w
m) represents the gradient of Ẽ(wm) with respect to w. In ad-

dition, we have that
0 ∈ ∂E(wm), m ∈ N. (27)

Theorem 3.2. (Strong Convergence) If assumptions (A1)-(A4) are valid,
then there holds the strong convergence: ∃ w∗ ∈ Rn(p+q) such that

lim
m→∞

wm = w∗. (28)

Theorem 3.3. (Consistency) If the assumptions (A1) − (A4) hold, then

the smooth error function Ẽ(wm) and the original error function E(wm)
converge to the same value as m goes to infinity, that is,

lim
m→∞

Ẽ(wm) = lim
m→∞

E(wm) = E(w∗). (29)

11

Remark: We show that the above assumptions (A1) − (A4) are suffi-
cient but not necessary conditions for the convergence results of Theorem

3.1−Theorem 3.3. Stochastic gradient descent (SGD) method is one of the
most common used strategies in dealing with large -scale machine learning
problems. Actually, the training algorithm proposed in this paper is one of
the specific cases of SGD, the fed sequence of the samples are with fixed or-
der in the total training procedure. We note that the practical strategies of
learning rates in [51, 52, 53] are of the special cases of presented assumption
(A2).

To our best knowledge, it firstly shows the strict convergence analysis for
incremental gradient neural networks with a constant learning rate in [54].
However, its theoretical analysis is limited for two-layer neural networks,
which can not simply extend to a multilayer network. The convergence anal-
yses of our work are beneficial to expanding the results of [54] to more general
cases in the future.

4. Proofs

Some necessary lemmas for the proofs are given as follows.

Lemma 4.1. Suppose that f(x) = ‖x‖ , x ∈ R
n, and

f̃(x, α) =




‖x‖ , if ‖x‖ > α,

‖x‖2

2α
+ α

2
, if ‖x‖ ≤ α.

(30)

Then lim
α↓0

∂f̃ (x, α) ⊆ ∂f(x).

Proof. We consider the following two cases to verify the result.
Case (I). If n = 1, the function f(x) corresponds to the simple absolute value
function, that is, f(x) = |x|. It is clear that the function f is Lipschitz in
terms of the triangle inequality. If x > 0, we get the following by Definition
3.2

f o(x; d) = lim sup
y→x

t↓0

y + td− y

t
= d. (31)

According to Definition 3.3,

∂f(x) = {ξ|d ≥ ξd, ∀d ∈ R} (32)

12

includes the singleton {1}.
Similarly, we obtain that

∂f(x) = {−1} , if x < 0. (33)

For the case x = 0, we can calculate

f o(0; d) =

{
d, if d ≥ 0,

−d, if d ≤ 0.
(34)

We then immediately have that ∂f(0) = [−1, 1]. Therefore, we conclude that

∂f(x) =





1, if x > 0,

−1, if x < 0,

[−1, 1], if x = 0.

(35)

We note that the derivative of (30) with respect to x can be obtained as
following

∂f̃ (x, α) =

{
x

‖x‖
, if ‖x‖ > α,

x
α
, if ‖x‖ ≤ α.

(36)

Then we have that ∣∣∣∣limα↓0 ∂f̃(x, α)
∣∣∣∣ ≤ 1. (37)

This then implies that lim
α↓0

∂f̃ (x, α) ⊆ ∂f(x).

Case (II). When n > 1, f(x) = ‖x‖. We let x = (x1, x2, · · · , xn)
T , then the

Clarke differential is as follows

∂f(x) =

{
x

‖x‖
, if ‖x‖ > 0,

{ξ ∈ Rn : ‖ξ‖ ≤ 1} , if ‖x‖ = 0.
(38)

The gradient of f̃(x, α) with respect to x can be expressed with

∂f̃ (x, α) =

{
x

‖x‖
, if ‖x‖ > α,

x

α
, if ‖x‖ ≤ α.

(39)

It is clear that lim
α↓0

∂f̃ (x, α) ⊆ ∂f(x). This then completes the proof.

13

Lemma 4.2. Suppose that the learning rate ηm > 0 satisfies that the as-
sumption (A2). And the sequence {am} (m ∈ N) satisfies that am > 0,
∞∑

m=0

ηma
γ
m < ∞ and limm→∞ |am+1 − am| = 0 for a fixed positive constant γ.

Then we have
lim

m→∞
am = 0. (40)

The details of the proof has been done in [48], and omitted here.

Lemma 4.3. Suppose that the assumptions (A1), (A2) and (A4) are valid.
Then the weight sequence {wm} generated by (14) and (15) satisfies the
following weak convergence

lim
m→∞

‖Ẽw(w
m+1)− Ẽw(w

m)‖ = 0. (41)

Proof. Due to the similarity, we just prove the result of lim
m→∞

‖Ẽurk
(wmJ+j)‖ =

0 and omit the proof of lim
m→∞

‖Ẽvi
(wm)‖ = 0.

By virtue of (13), we know that

Ẽurk
(wmJ+j) =

J−1∑

j=0

Hm,j,jGm,j,j + Jλ∇urk
h(umJ+j

rk
, αm), (42)

Ẽvi
(wmJ+j) =

J−1∑

j=0

q∑

k=1

Hm,j,jukig
′
(
vi · x

j
)
(xj)T + Jλ∇vi

h(vmJ+j
i , αm),

(43)
which yields

∥∥∥Ẽurk

(
w(m+1)J

)
− Ẽurk

(
wmJ

)∥∥∥

=
∥∥

J−1∑

j=0

(
Hm+1,0,jGm+1,0,j −Hm,0,jGm,0,j

)

+ Jλ∇urk
h(u(m+1)J

rk
, αm)− Jλ∇urk

h(umJ
rk

, αm)
∥∥

≤

J−1∑

j=0

∥∥(Hm+1,0,jGm+1,0,j −Hm,0,jGm,0,j
)∥∥

+ Jλ
∥∥∇urk

h(u(m+1)J
rk

, αm)−∇urk
h(umJ

rk
, αm)

∥∥ .

(44)

14

From Assumption (A4), we can see that there are C1 > 0 and C2 > 0 such
that

max
0≤j≤J−1

{
‖xj‖, ‖yj‖

}
= C1, sup

m∈N
‖wm‖ = C2. (45)

First of all, we know that f , g are continuously differentiable. And f ′ and
g′ are Lipschitz continuous and uniformly bounded on R. Thus, there exist
three positive constants C3, C4 and C5, such that

|f (x)| ≤ C3, ∀x ∈ R; (46)

‖G(z)‖ ≤ C4, ∀z ∈ R
n; (47)

|f ′ (x)| ≤ C5, ∀x ∈ R; (48)

|f ′ (x)− f ′ (y)| ≤ Lf ′ |x− y|, ∀x, y ∈ R. (49)

where Lf ′ represents the Lipschitz constant of f ′.

∥∥∇ju
mJ+j
rk

∥∥ =
∥∥Hm,j,jGm,j,j + λ∇urk

h(umJ+j
rk

, αm)
∥∥

≤ (sup
x∈R

|f(x)|+ |yjk|)C5C4 + λ

≤ C6,

(50)

Similarly,
∥∥∥∇jv

mJ+j
i

∥∥∥ ≤ C7, for some C7 > 0. Now let’s consider the first

part of (44):

∥∥Hm+1,0,jGm+1,0,j −Hm,0,jGm,0,j
∥∥ ≤ (Γ1 + Γ2 + Γ3) (51)

where
Γ1 =

∣∣f
(
u(m+1)J
rk

·Gm+1,0,j
)
− f

(
umJ
rk

·Gm,0,j
)∣∣

×
∣∣f ′
(
u(m+1)J
rk

·Gm+1,0,j
)∣∣ ∥∥Gm+1,0,j

∥∥ ,
(52)

Γ2 =
∣∣f ′
(
u(m+1)J
rk

·Gm+1,0,j
)
− f ′

(
umJ
rk

·Gm,0,j
)∣∣

×
∣∣f
(
umJ
rk

·Gm,0,j
)
− yjk

∣∣ ∥∥Gm+1,0,j
∥∥ ,

(53)

Γ3 =
∥∥Gm+1,0,j −Gm,0,j

∥∥ ∣∣f(umJ
rk

·Gm,0,j)− yjk
∣∣

×
∣∣f ′(umJ

rk
·Gm,0,j)

∣∣ .
(54)

15

Then by Newton-Leibniz formula, we find

Γ1=

∣∣∣∣∣

∫
u
(m+1)J
rk

Gm+1,0,j

u
mJGm,0,j

f ′(x)dx

∣∣∣∣∣

×
∣∣f ′
(
u(m+1)J
rk

·Gm+1,0,j
)∣∣ ∥∥Gm+1,0,j

∥∥

≤ C5|u
(m+1)J
rk

·Gm+1,0,j − umJ
rk

·Gm,0,j|C5C4

≤ C8

(
‖u(m+1)J

rk
− umJ

rk
‖‖Gm+1,0,j‖

+ ‖umJ
rk

‖‖Gm+1,0,j −Gm,0,j‖
)

≤ C8

(
C4

J−1∑

j=0

ηm‖∇ju
mJ+j
rk

‖

+ ‖umJ
rk

‖ sup
x∈R

|g′(x)| ‖xj‖
n∑

i=1

J−1∑

j=0

ηm‖∇jv
mJ+j
i ‖

)

≤ ηm

(
JC4C6C8 + nJC1C2 sup

x∈R
|g′(x)|C7C8

)

≤ C9ηm,

(55)

where C8 = C4C
2
5 , C9 = JC4C6C8 + nJC1C2 supx∈R |g

′(x)|C7C8). By the
same way, we can obtain the following by (49)

Γ2 ≤ Lf ′

∣∣u(m+1)J
rk

·Gm+1,0,j − umJ
rk

·Gm,0,j
∣∣

×

(
sup
x∈R

|f(x)|+ |yjk|

)
C4

≤ Lf ′

∣∣u(m+1)J
rk

·Gm+1,0,j − umJ
rk

·Gm,0,j
∣∣ (C3 + C1)C4

≤ C10ηm,

(56)

where Lf ′ denotes the Lipschitz coefficient of f ′, and

16

C10 = Lf ′(JC4C6 + nJC1C2 supx∈R |g
′(x)|C7)(C1 + C3)C4.

Γ3 ≤ sup
x∈R

|g′(x)|‖xj‖

n∑

i=1

J−1∑

j=0

‖ηm∇jv
mJ+j
i ‖

× (sup
x∈R

|f(x)|+ |yjk|)C5

≤ sup
x∈R

|g′(x)|C1nJηmC7(C3 + C1)C5

≤ C11ηm,

(57)

where C11 = supx∈R |g
′(x)|C1nJC7(C3 + C1)C5.

Now we study the second part of (44) with the following four cases:






u
(m+1)J
rk

‖u
(m+1)J
rk

‖
−

u
mJ
rk

‖umJ
rk

‖
, for ‖u

(m+1)J
rk ‖ > αm+1, ‖u

mJ
rk

‖ > αm.

u
(m+1)J
rk

‖u
(m+1)J
rk

‖
−

u
mJ
rk

αm
, for ‖u

(m+1)J
rk ‖ > αm+1, ‖u

mJ
rk

‖ ≤ αm.

u
(m+1)J
rk

αm+1
−

u
mJ
rk

‖umJ
rk

‖
, for ‖u

(m+1)J
rk ‖ ≤ αm+1, ‖u

mJ
rk

‖ > αm.

u
(m+1)J
rk

αm+1
−

u
mJ
rk

αm
, for ‖u

(m+1)J
rk ‖ ≤ αm+1, ‖u

mJ
rk

‖ ≤ αm.

(58)

We just study the first case because of the similarity of analyzing the other
cases. From (A2), ηm = o(αm).

∣∣∣∣∣∣
u
(m+1)J
rk∥∥∥u(m+1)J
rk

∥∥∥
−

umJ
rk∥∥umJ
rk

∥∥

∣∣∣∣∣∣

≤

∥∥∥u(m+1)J
rk − umJ

rk

∥∥∥
∥∥∥u(m+1)J

rk

∥∥∥
+
∥∥umJ

rk

∥∥

∥∥∥u(m+1)J
rk − umJ

rk

∥∥∥
∥∥∥u(m+1)J

rk

∥∥∥
∥∥umJ

rk

∥∥

= 2

∥∥∥u(m+1)J
rk − umJ

rk

∥∥∥
∥∥∥u(m+1)J

rk

∥∥∥

≤ 2

∥∥∥u(m+1)J
rk − umJ

rk

∥∥∥
αm

≤
C12ηm
αm

,

(59)

17

where C12 = 2JC6. Thus we obtain that

Jλ‖∇hurk
(u(m+1)J

rk
, αm)−∇hurk

(umJ
rk

, αm)‖ ≤ C13
ηm
αm

. (60)

where C13 = JλC12.
In terms of (44), (51), (55), (56), (57) and (60), we conclude that

∥∥∥Ẽurk

(
w(m+1)J

)
− Ẽurk

(
wmJ

)∥∥∥

≤ JC9ηm + JC10ηm + JC11ηm + C13
ηm
αm

≤ C14(3ηm +
ηm
αm

) → 0, (m → ∞)

(61)

where C14 = max{JC9, JC10, JC11, C13}.

Lemma 4.4. Let q(x) be a function defined on a bounded closed interval [a,
b], such that q′(x) is Lipschitz continuous with Lipschitz constant K > 0.
Then q(x) is differentiable almost everywhere in [a, b] and

|q′′(x)| ≤ K, a.e.[a, b]. (62)

Moreover, there exists a constant C > 0 such that

q(x) ≤ q(x0) + q′(x0)(x− x0) + C(x− x0)
2, (63)

where x0, x ∈ [a, b].
The details are referred to [48] for interested readers.

The next lemma plays an essential role in assuring the weak convergence
theorem 3.1. It also reveals an almost monotonicity of the smoothing error
function during training procedure. Certainly, the rigorous proof of this
lemma is a little complicated in which the Taylor expansion and inequality
tricks have been frequently used.

Lemma 4.5. Let the sequence
{
wmJ+j

}
be generated by (14) and (15). Un-

der assumptions (A1), (A2) and (A4), there holds

Ẽ(w(m+1)J) ≤Ẽ(wmJ)− ηm

∥∥∥Ẽw(w
mJ)
∥∥∥
2

+ δm

+ J(n+ q)
αm − αm+1

2
.

(64)

18

Proof. By virtue of (13), we have

Ẽ(wmJ+j) =
1

2

J−1∑

j=0

∥∥F (UmJ+jG(VmJ+jxj))− yj
∥∥2

+ Jλ

(
q∑

k=1

h(umJ+j
rk

, αm) +
n∑

i=1

h(vmJ+j
i , αm)

)

=
1

2

J−1∑

j=0

q∑

k=1

∣∣f(umJ+j
rk

·G(VmJ+jxj))− yjk
∣∣2

+ Jλ(

q∑

k=1

h(umJ+j
rk

, αm) +

n∑

i=1

h(vmJ+j
i , αm)),

(65)

where j = 0, 1, · · · , J − 1 and m ∈ N.
From Lemma 4.4, (16), (17) and assumption (A1), there is a constant

C15 > 0 such that

(
f(u(m+1)J

rk
·Gm+1,0,j)− yjk

)2

≤
(
f(umJ

rk
·Gm,0,j)− yjk

)2

+ 2Hm,0,j
(
u(m+1)J
rk

·Gm+1,0,j − umJ
rk

·Gm,0,j
)

+ C15

(
u(m+1)J
rk

·Gm+1,0,j − umJ
rk

·Gm,0,j
)2

.

(66)

Let
Γ4 =

(
f(umJ

rk
·Gm,0,j)− yjk

)2
, (67)

Γ5 = 2Hm,0,j
(
u(m+1)J
rk

·Gm+1,0,j − umJ
rk

·Gm,0,j
)
, (68)

Γ6 = C15

(
u(m+1)J
rk

·Gm+1,0,j − umJ
rk

·Gm,0,j
)2

. (69)

Then from (68), we find

Γ5 = 2Hm,0,j
[
(u(m+1)J

rk
− umJ

rk
) ·Gm,0,j

+ umJ
rk

· (Gm+1,0,j −Gm,0,j)

+ (u(m+1)J
rk

− umJ
rk

) · (Gm+1,0,j −Gm,0,j)
]
.

(70)

19

By virtue of the integral Taylor expansion and assumption (A1), g′′(x)
exits almost everywhere which implies

umJ
rk

· (Gm+1,0,j −Gm,0,j)

=

n∑

i=1

umJ
rk,i

g′(vmJ
i · xj)

(
v
(m+1)J
i − vmJ

i

)
· xj

+
n∑

i=1

umJ
rk,i

[(
v
(m+1)J
i − vmJ

i

)
· xj
]2

×

∫ 1

0

(1− t)g′′(vmJ · x+ t(v
(m+1)J
i − vmJ

i))dt,

(71)

where umJ
rk,i

is the i-th element of the weight vector umJ
rk

.

h(u(m+1)J
rk

, αm+1)− h(umJ
rk

, αm) = Γ7 + Γ8, (72)

where
Γ7 = h(u(m+1)J

rk
, αm)− h(umJ

rk
, αm), (73)

Γ8 = h(u(m+1)J
rk

, αm+1)− h(u(m+1)J
rk

, αm). (74)

Using Taylor formula,

h(u(m+1)J
rk

, αm)

= h(umJ
rk

, αm) +∇urk
h(umJ

rk
, αm) ·

(
u(m+1)J
rk

− umJ
rk

)

+
1

2

(
u(m+1)J
rk

− umJ
rk

)
∇∇urk

h(uξ, αξ)
(
u(m+1)J
rk

− umJ
rk

)T
,

(75)

where uξ = θu
(m+1)J
rk + (1 − θ)umJ

rk
, αξ = θαm+1 + (1 − θ)αm, 0 < θ < 1.

Since h(z, α) is smooth and continuous differential, it is easy to find that

‖∇∇urk
h(uξ, αξ)‖ is bounded by O

(
1

αm

)
. So we have

h(u(m+1)J
rk

, αm) ≤ h(umJ
rk

, αm) +∇urk
h(umJ

rk
, αm) ·

(
u(m+1)J
rk

− umJ
rk

)

+
1

2
sup
uξ∈Ω

αξ∈R

‖∇∇urk
h(uξ, αξ)‖

(
u(m+1)J
rk

− umJ
rk

)2

≤ h(umJ
rk

, αm) +∇urk
h(umJ

rk
, αm) ·

(
u(m+1)J
rk

− umJ
rk

)

+ Cm
16

∥∥u(m+1)J
rk

− umJ
rk

∥∥2 .

(76)

20

where Cm
16 = sup

{
1
2
supuξ∈Ω

αξ∈R

‖∇∇urk
h(uξ, αξ)‖

}
. It is obvious that

Γ7 ≤∇urk
h(umJ

rk
, αm) ·

(
u(m+1)J
rk

− umJ
rk

)

+ Cm
16

∥∥u(m+1)J
rk

− umJ
rk

∥∥2 .
(77)

By (11), we obtain the following

Γ8 =






0, ‖u
(m+1)J
rk ‖ ≥ αm,

−

(

‖u
(m+1)J
rk

‖−αm

)2

2αm
, ‖u

(m+1)J
rk ‖ ∈ (αm+1, αm),

γm, ‖u
(m+1)J
rk ‖ ≤ αm+1,

(78)

where γm =
(αm−αm+1)

(

∥

∥

∥
u
(m+1)J
rk

∥

∥

∥

2
−αmαm+1

)

2αmαm+1
. This implies that

|Γ8| ≤
αm − αm+1

2
. (79)

Thus, we have

h(u(m+1)J
rk

, αm+1)

≤ h(umJ
rk

, αm) +∇urk
h(umJ

rk
, αm) ·

(
u(m+1)J
rk

− umJ
rk

)

+ Cm
16

∥∥u(m+1)J
rk

− umJ
rk

∥∥2 + αm − αm+1

2
.

(80)

By the same way, we can find

h(v
(m+1)J
i , αm+1)

≤ h(vmJ
i , αm) +∇vi

h(vmJ
i , αm) ·

(
v
(m+1)J
i − vmJ

i

)

+ Cm
17

∥∥∥v(m+1)J
i − vmJ

i

∥∥∥
2

+
αm − αm+1

2
.

(81)

By virtue of (14) and (15), we then obtain

u(m+1)J
rk

− umJ
rk

=
J−1∑

j=0

ηm∇ju
mJ+j
rk

=

J−1∑

j=0

ηm∇ju
mJ
rk

+

J−1∑

j=0

ηm
(
∇ju

mJ+j
rk

−∇ju
mJ
rk

)
,

(82)

21

v
(m+1)J
i − vmJ

i =
J−1∑

j=0

ηm∇jv
mJ+j
i

=
J−1∑

j=0

ηm∇jv
mJ
i +

J−1∑

j=0

ηm

(
∇jv

mJ+j
i −∇jv

mJ
i

)
.

(83)

Summing (66) from k = 1 to k = q and j = 0 to j = J−1, and then multiple
1
2
, summing (76) from k = 1 to k = q and summing (81) from i = 1 to i = n,

and also, from (16), (17), (67)-(81), (82), (83), (42), (43), we then obtain

Ẽw(w
(m+1)J) ≤

1

2

J−1∑

j=0

q∑

k=1

Γ4 +
J−1∑

j=0

q∑

k=1

Hm,0,j(u(m+1)J
rk

− umJ
rk

) ·Gm,0,j

+
J−1∑

j=0

q∑

k=1

Hm,0,j

(n∑

i=1

umJ
rk,i

g′(vmJ
i · xj)

(
v
(m+1)J
i − vmJ

i

)
· xj

+

n∑

i=1

umJ
rk,i

[(
v
(m+1)J
i − vmJ

i

)
· xj
]2

×

∫ 1

0

(1− t)g′′(vmJ · x+ t(v
(m+1)J
i − vmJ

i))dt

)

+
J−1∑

j=0

q∑

k=1

Hm,0,j(u(m+1)J
rk

− umJ
rk

) · (Gm+1,0,j −Gm,0,j)

+
J−1∑

j=0

q∑

k=1

C15Γ6 + Jλ

q∑

k=1

h(umJ
rk

, αm)

+ Jλ

q∑

k=1

∇urk
h(umJ

rk
, αm) ·

(
u(m+1)J
rk

− umJ
rk

)

+ Jλ

q∑

k=1

Cm
16

∥∥u(m+1)J
rk

− umJ
rk

∥∥2 + Jλ

n∑

i=1

h(vmJ
i , αm)

+ Jλ

n∑

i=1

∇vi
h(vmJ

i , αm) ·
(
v
(m+1)J
i − vmJ

i

)

+ Jλ
n∑

i=1

Cm
17

∥∥∥v(m+1)J
i − vmJ

i

∥∥∥
2

+ J(n+ q)λ
αm − αm+1

2

22

=Ẽw(w
mJ) +

q∑

k=1

(
u(m+1)J
rk

− umJ
rk

)
· Ẽurk

(wmJ)

+
n∑

i=1

(
v
(m+1)J
i − vmJ

i

)
· Ẽvi

(wmJ) + ζm

+ J(n + q)λ
αm − αm+1

2

=Ẽw(w
mJ)−

q∑

k=1

(
J−1∑

j=0

ηm∇ju
mJ
rk

)
· Ẽurk

(wmJ)

−

n∑

i=1

(
J−1∑

j=0

ηm∇jv
mJ
i

)
· Ẽvi

(wmJ) + δm

+ J(n + q)λ
αm − αm+1

2

=Ẽw(w
mJ)− ηm

q∑

k=1

∥∥∥Ẽurk
(wmJ)

∥∥∥
2

− ηm

n∑

i=1

∥∥∥Ẽ2
vi
(wmJ)

∥∥∥
2

+ δm + J(n + q)λ
αm − αm+1

2

=Ẽw(w
mJ)− ηm

∥∥∥Ẽw(w
mJ)
∥∥∥
2

+ δm

+ J(n+ q)λ
αm − αm+1

2
,

ζm =

J−1∑

j=0

q∑

k=1

Hm,0,j(u(m+1)J
rk

− umJ
rk

) · (Gm+1,0,j −Gm,0,j)

+
J−1∑

j=0

q∑

k=1

Hm,0,j
n∑

i=1

umJ
rk,i

[(
v
(m+1)J
i − vmJ

i

)
· xj
]2

×

∫ 1

0

(1− t)g′′(vmJ · x+ t(v
(m+1)J
i − vmJ

i))dt

+

J−1∑

j=0

q∑

k=1

C15Γ6 + J

q∑

k=1

Cm
16

∥∥u(m+1)J
rk

− umJ
rk

∥∥2

+ J
n∑

i=1

Cm
17

∥∥∥v(m+1)J
i − vmJ

i

∥∥∥
2

,

(84)

23

and

δm =

(
J−1∑

j=0

ηm
(
∇ju

mJ+j
rk

−∇ju
mJ
rk

)
)

· Ẽurk
(wmJ)

+

(
J−1∑

j=0

ηm

(
∇jv

mJ+j
i −∇jv

mJ
i

))
· Ẽvi

(wmJ) + ζm.

(85)

By a similar argument with (51)-(61) and (14), we can find that

∥∥∇ju
mJ+j
rk

−∇ju
mJ
rk

∥∥ ≤ C18ηm (86)

∥∥∥∇jv
mJ+j
i −∇jv

mJ
i

∥∥∥ ≤ C19ηm, (87)

for some C18, C19 > 0. By virtue of (45)-(48), (42) and (43), it is easy to see
that the first term of δm can be controlled by

(
J−1∑

j=0

ηm
(
∇ju

mJ+j
rk

−∇ju
mJ
rk

)
)

· Ẽurk
(wmJ)

≤ ηmC18ηm

(
(sup
x∈R

|f(x)| − yjk)C5C4 + λ

)
≤ C20η

2
m

(88)

In the same way, we can estimate the other terms of δm with corresponding
constants C21, ..., C26 > 0. Finally, the desired estimate (64) could be proved
by setting C27 =

∑26
υ=21 Cυ.

Proof of Theorem 3.1. It is easy to see that the series
∑∞

m=1
αm−αm+1

2
<

∞. In addition, by Lemma 4.5, we can conclude that

∞∑

m=0

ηm

∥∥∥Ẽw(w
mJ)
∥∥∥
2

=
∞∑

m=0

ηm

(
q∑

k=1

∥∥∥Ẽurk
(wmJ)

∥∥∥
2

+
n∑

i=1

∥∥∥Ẽvi
(wmJ)

∥∥∥
2
)

< ∞,

(89)

which shows that
∞∑

m=0

ηm

∥∥∥Ẽurk
(wmJ)

∥∥∥
2

< ∞ (90)

24

From Lemma 4.2 and (61), it then follows that

lim
m→∞

∥∥∥Ẽurk

(
wmJ

)∥∥∥ = 0. (91)

Similarly we have

lim
m→∞

∥∥∥Ẽurk

(
wmJ+j

)∥∥∥ = 0, (92)

and
lim

m→∞

∥∥∥Ẽvi

(
wmJ+j

)∥∥∥ = 0, (93)

which then implies that

lim
m→∞

∥∥∥Ẽw(w
m)
∥∥∥ = 0. (94)

There exists a bounded subsequence {wmk} ∈ {wm} which converges to w∗,
since {wm} is bounded. From the argument above, we have

E(w∗) = lim
s→∞

Ẽ(wms) (95)

which yields

Ẽw(w
∗) = lim

s→∞
Ẽw(w

ms) = 0. (96)

Thus here we get 0 ∈ ∂Ẽ(w∗). From definition of Ẽ(wm), we can find

∂Ẽ(wm) ⊆ ∂E(wm) by Lemma 4.1. So 0 ∈ ∂E(w∗).
Proof of Theorem 3.2. From Theorem 3.1, we have

0 = ∂Ẽ(w∗) ⊆ ∂E(w∗). (97)

This means that w∗ is a Clarke stationary point of E(w∗). If {wm} has more
than two stationary points. Without loss of generality, we can assume there
are two different stationary points w1 and w2. Without loss of generality,
we assume that the first components w11 6= w12, ∀θ ∈ (0, 1), denote wθ =
θw11 + (1 − θ)w12. Then, there exits a subsequence wmj of wm such that
lim
j→∞

wmj = wθ, where wθ is the first component of wθ. This contradicts the

assumption (A3). Thus, w∗ must be the unique Clarke stationary point of
{wm}.

25

Proof of Theorem 3.3. The above Theorem 3.2 has implied that the
weight sequence {wm} converges to a fixed point w∗. By the definitions of
(7) and (13), we can find that

∣∣∣E(wmJ+j)− Ẽ(wmJ+j)
∣∣∣

=

∣∣∣∣∣λ
q∑

k=1

(∥∥umJ+j
rk

∥∥− h(umJ+j
rk

, αm)
)

+ λ
n∑

i=1

(∥∥∥vmJ+j
i

∥∥∥− h(vmJ+j
i , αm)

) ∣∣∣∣∣

≤ λ

q∑

k=1

∣∣∣∣
∥∥umJ+j

rk

∥∥−
‖umJ+j

rk
‖2

2αm

−
αm

2

∣∣∣∣

+ λ
n∑

i=1

∣∣∣∣∣
∥∥∥vmJ+j

i

∥∥∥−
‖vmJ+j

i ‖2

2αm

−
αm

2

∣∣∣∣∣
(
Here ‖umJ+j

rk
‖ ≤ αm and ‖vmJ+j

i ‖ ≤ αm

)

≤ λ

q∑

k=1

(∥∥umJ+j
rk

∥∥− αm

)2

2αm

+ λ

n∑

i=1

(∥∥∥vmJ+j
i

∥∥∥− αm

)2

2αm

≤ λq
αm

2
+ nλ

αm

2
→ 0.

(since αm → 0 as m → ∞)

(98)

Consequently, we obtain

lim
m→∞

∣∣∣E(wm)− Ẽ (wm)
∣∣∣ = 0. (99)

This completes the proof.

5. Simulations

In this section, we provide simulations to compare the performance of the
proposed new training algorithm (14)-(21), SGLBP, with the common BP

26

and BP with Weight Decay (WDBP) on two problems: function approxima-
tion and nonlinear autoregression. The simulations support the convergence
assertion made in Section 3 as well.

5.1. Approximation of ’SinC’ Function with Noise

In this example, the three algorithms, BP, WDBP and SGLBP, are used
to approximate the “SinC” function, a popular example to demonstrate the
performance of intelligent algorithms for regression problems, defined as fol-
lows

y(x) =

{
sin(x)/x, x 6= 0,

1, x = 0.
(100)

The training set with 2, 000 data (xi = 1, 2, · · · , 2, 000) is randomly generated
on the interval [−10, 10] with outputs y(xi)+εi, where εi is the uniform noise
distributed in [−0.04, 0.04]. The testing set, however, is uniformly created
on the interval [−10, 10] with 2, 000 noise-free samples.Algorithms TrainingT ime(s) TrainingRMSE TestingRMSE PrunedNeuronsBP 131.6 0.05823 0.07574 0WDBP 145.3 0.03471 0.04641 2.4523SGLBP 153.7 0.01905 0.02800 4.6429

Figure 1: Performance comparison for learning of the noisy function SinC.

To compare the three different algorithms, we have designed the identical
networks (2− 20− 1 number of neurons of input, hidden and output layers,
separately) with the same initial training parameters to the regression prob-
lem. The activation functions of hidden and output layers have been assigned
with tansig(·) and purelin(·) functions, respectively. The initial weights (in-
cluding bias) have been generated with the Nguyen-Widrow algorithm. The
learning rate and penalty coefficient are separately set to be η = 0.006 and
λ = 0.009. The stop criteria for the training is at 40, 000 iterations.

For the sake of comparing the generalization and pruning abilities, the
simulations have been repeated 10 times for all the three algorithms. Fig.
1 shows the average results in terms of Training Time, Training RMSE,
Testing RMSE and Pruned Neurons, where RMSE means the root mean
squared error.

27

Due to the additional computation burden of the penalty terms, WDBP
and SGLBP are more time consuming than the common BP algorithm. How-
ever, we observe that the training RMSE of SGLBP is less than those of
WDBP and BP, which shows that SGLBP performs a better approximation
for the SinC function. The lower testing RMSEs of WDBP and SGLBP
demonstrate that they have the stronger generalization ability than BP. From
the last column of Fig 1, it shows that SGLBP has the best pruning ability
since the group sparse due to the use of Group Lasso penalty.

−10 −8 −6 −4 −2 0 2 4 6 8 10−0 .6−0 .4−0 .200 .20 .4
0 .60 .811.2

x
y=Si nC(x)

S inCw it hout No iseS inCw it h No iseBPWDBPSGLBP

Figure 2: Comparison of the approximation performance for the algorithms: BP, WDBP
and SGLBP.

After training, the outputs of the noise-free testing set for the three neural
networks have been graphed in Fig. 2. Based on the observation, it is clear
that SGBP shows the best approximation performance for SinC function
than WDBP and BP.

5.2. NAR Problem

We consider the following two-dimensional nonlinear time series predic-
tion problem [11], defined by

y(k) =
(
0.8− 0.5 exp(−y2(k − 1))

)
y(k − 1)

−
(
0.3 + 0.9 exp(−y2(k − 1))

)
y(k − 2)

+ 0.1 sin(πy(k − 1)),

(101)

where k = 3, 4, · · · , 1002.

28

−1.5 −1 −0.5 0 0.5 1 1.5−1.5−1−0.500.5
11.5

y (k−1)
y(k −2)

NARw it hout Nois eNARw it h Nois e

Figure 3: NAR problem: Training data with noise and the original data without noise.

This is a noise-free system which was specified by a limit circle. One thou-
sand samples were generated under the initial condition that y(1) = y(2) =
0.1. To verify the stability and noise resistance of the proposed algorithm,
the first 500 training samples were added noise ε(k), where the noise ε(k) is
Gaussian with zero mean and variance 0.05 (cf. Fig. 3). The remaining 500
noise-free samples were used for testing data. According to the previous ob-
servations y(k− 1) and y(k− 2), the proposed algorithm, SGLBP, is trained
to predict y(k). In this experiment, the network is designed with three layers

−1.5 −1 −0.5 0 0.5 1 1.5−1.5−1−0.500.5
11.5

y (k−1)
y(k −2)

T raining DataA ct ual Out put

Figure 4: Training data and the corresponding actual output of the trained neural network.

with the architecture 3 − 13 − 1 (number of input, hidden and output neu-
rons which include the bias in the input and hidden layers). Based on the
obtained samples, the functions tansig(·) and purelin(·) have been selected
as the activation functions of hidden and output layers, respectively. The

29

initial weights have been randomly chosen on the closed interval [−1.0, 1.0]
with learning rate η = 0.006 and the penalty coefficient λ = 0.008. The stop
criteria is that the maximum training iterations reach 40, 000 or the training
error is below 0.001.

In Fig. 4, the blue color points (•) represent the first noisy 500 training
samples, while the red color points (•) stand for the corresponding actual
outputs of the trained neural network. It shows that the actual outputs are
a good approximation for the time series prediction problem (101) except for
some of the inner training points.

−1.5 −1 −0.5 0 0.5 1 1.5−1.5−1−0.500.5
11.5

y (k−1)
y(k −2)

T est Dat aA ct ual Out put

Figure 5: Test data and the corresponding actual output based on the trained neural
network.

Generalization ability is one of the important indexes to measure the
performance of neural networks. Fig. 5 shows clearly that the proposed
algorithm, SGLBP, predicts the testing dataset very well, where (•) and (•)
are the ideal test outputs and the predictive outputs, respectively. Fig. 6
demonstrates the convergence behavior of SGLBP.

This simulation shows that SGLBP outperforms the normal BP and
WDBP. Furthermore, all these simulations demonstrate the error function
of SGLBP decreases to a stable minimum value. Furthermore, the norm of
the gradient of error function does approach to zero as iteration increases
large enough, which supports the convergence results (cf. Theorem 3.1).

5.3. Classification

In this simulation, the following classification datasets were downloaded
from UCI Machine Learning Repository 7, which include 4 binary classifica-
tion and one multi-class classification problems [28]. Each dataset is ran-

30

100 101 102 103 10400.511.522.533.544.5

Number of iterations

Norm of gradientsError

Figure 6: The training error and the norm of gradient of error with respect to weight
vector. Data Set DataSize Input Features Classes1. Iris 150 4 22. Vehicle 946 18 43. Wisconsin B. C. 198 34 24. Wine 178 13 35. Adult 48842 14 2

Figure 7: Datasets for classification performance comparison.

domly split into training and testing subsets with a fixed percentage, 80%
and 20% . For each dataset, we adopt the following normalization technique
xnew = 2(x−x̄)

(xmax−xmin)
to preprocess the training and testing samples. In terms

of the classification datasets, we establish five different FNNs for the two
algorithms (Fig. 8). Each of them differs by network architectures, initial
weight intervals, number of maximum iterations, learning rates and penalty
coefficients, respectively.

To compare the generalization and pruning abilities of WDBP and the
proposed SGLBP, each simulation was repeated 10 times with three fold cross
validation process.

For the numerical results, we mainly focus on the three performance met-
rics which have been listed in the last columns of Fig. 9: the average training
accuracy, average testing accuracy and the average number of pruned hidden

31

Data Sets Architecture Initia lInterval MaxIte ration LearningRate PenaltyCoefficient1. Ba lance 5Ø18Ø3 [Ø0 .5,0 .5] 15,000 0 .09 0 .0122 . Eco li 5Ø20Ø3 [Ø0 .4,0 .4] 30,000 0 .12 0 .0053 . Ferti lity 10Ø20Ø1 [Ø0 .2,0 .2] 10,000 0 .06 0 .0084 .G lass 11Ø22Ø3 [Ø0 .5,0 .5] 40,000 0 .07 0 .0045 . Iris 5Ø20Ø3 [Ø0 .3,0 .3] 12,000 0 .12 0 .0056 . Live r 7Ø22Ø2 [Ø0 .5,0 .5] 20,000 0 .07 0 .0037 .Sonar 61Ø20Ø2 [Ø0 .8,0 .8] 15,000 0 .08 0 .0088 .Vehic le 19Ø30Ø2 [Ø0 .5,0 .5] 40,000 0 .10 0 .0109 .Ve rtebra l 7Ø12Ø3 [Ø0 .4,0 .4] 23,000 0 .08 0 .005
Figure 8: Network architecture and the corresponding learning parameters for different
datasets. Data Sets Algorithm TrainAcc . TestAcc . PrunedNeurons1. Iris WDBP 0 .9278 0 .9036 0 .1SGLBP 0 .9942 0 .9563 14 .17322 .Vehic le WDBP 0 .7890 0 .7237 0 .3163SGLBP 0 .9672 0 .7785 6 .06173 .Wisconsin(BC) WDBP 0 .9479 0 .9389 0 .2106SGLBP 0 .9581 0 .9408 5 .98124 .Wine WDBP 0 .9491 0 .9387 0 .3621SGLBP 0 .9608 0 .9534 4 .86195 .Adult WDBP 0 .8316 0 .8202 3 .0251SGLBP 0 .8536 0 .8467 13 .1286

Figure 9: Performance comparison for the two pruning algorithms.

neurons. Fig. 9 demonstrates two aspects of the algorithms. The first two
performance measures show the network classification capabilities, while the
last one, “Pruned Neurons”, evaluates the pruning effect. It is clear to see
that the proposed SGLBP algorithm performs much better than the common
WDBP algorithm on both classification accuracy and pruning ability.

6. Conclusions

We have proposed a new type of penalty functions for neural networks
that effectively prunes the neurons at the group level. To overcome the
numerical oscillations and nonsmooth problems, smoothing techniques have
been applied to approximate the l1 − l2 norm penalty term. The weak and
strong convergence of the suggested smoothing algorithms have been proved

32

which results in the consistent convergence properties for the proposed algo-
rithms with non-differentiable penalty terms. The simulations indicate the
usefulness of the new suggested penalization approach.

An important future research topic for incremental FNNs is to analyze the
convergence behavior with a constant learning rate. The existing literature
on converge analysis shows that the learning rates during training are heavily
dependent on the iteration number and decrease to zero as iteration goes on.
This then directly leads to reduced efficiency for real experiments. [54] shows
an interesting attempt to obtain the convergence results with constant learn-
ing rate. Unfortunately, it is only valid for no-hidden layer networks under
some complicated constraints. How to guarantee the convergence statements
for multilayer networks with constant learning rate and apply for the real
applications is one of our next challenging works.

Acknowledgment

The authors wish to thank the anonymous reviewers for their insightful
comments and suggestions which greatly improved this work.

References

References

[1] M. G. Augasta, and T. Kathirvalavakumar, “A novel pruning algorithm
for optimizing feedforward neural network of classification problems,”
Neural processing letters, vol. 34, no. 3, pp. 241-258, 2011.

[2] M. G. Augasta, and T. Kathirvalavakumar, “Pruning algorithms of neu-
ral networks-a comparative study,” Central European Journal of Com-
puter Science, vol. 3, no. 3, pp. 105-115, 2013.

[3] L. M. Belue, and K. W. Bauer, “Determining input features for multi-
layer perceptrons,” Neurocomputing, vol. 7, no. 2, pp. 111-121, 1995.

[4] D. P. Bertsekas, “Nondifferentiable optimization via approximation,”
Mathematical Programming Studiy, vol. 3 pp. 1-25, 1975.

[5] W. Bian, and X. Xue, “Subgradient-based neural networks for non-
smooth nonconvex optimization problems,” Neural Networks, IEEE
Transactions on, vol. 20, no. 6, pp. 1024-1038, 2009.

33

[6] W. Bian, and X. Chen, “Worst-Case Complexity of Smoothing
Quadratic Regularization Methods for Non-Lipschitzian Optimization,”
SIAM Journal on Optimization, vol. 23, no. 3, pp. 1718-1741, 2013.

[7] W. Bian, and X. Chen, “Smoothing neural network for constrained non-
Lipschitz optimization with applications,” Neural Networks and Learn-
ing Systems, IEEE Transactions on, vol. 23, no. 3, pp. 399-411, 2012.

[8] W. Bian, and X. Chen, “Neural Network for Nonsmooth, Nonconvex
Constrained Minimization Via Smooth Approximation,” Neural Net-
works and Learning Systems, IEEE Transactions on, vol. 25, no. 3, pp.
545-556, 2014.

[9] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[10] D. Chakraborty, and N. R. Pal, “A novel training scheme for multilay-
ered perceptrons to realize proper generalization and incremental learn-
ing,” Neural Networks, IEEE Transactions on, vol. 14, no. 1, pp. 1-14,
2003.

[11] S. Chen, “Local regularization assisted orthogonal least squares regres-
sion,” Neurocomputing, vol. 69, nos. 4-6, pp. 559-585, 2006.

[12] X. Chen, “Smoothing methods for nonsmooth, nonconvex minimiza-
tion,” Mathematical Programming, vol. 134, no. 1, pp. 71-99, 2012.

[13] X. Chen, F. Xu, and Y. Ye, “Lower Bound Theory of Nonzero Entries
in Solutions of ℓ2-ℓp Minimization,” SIAM Journal on Scientific Com-
puting, vol. 32, no. 5, pp. 2832-2852, 2010.

[14] X. Chen, and W. Zhou, “Smoothing Nonlinear Conjugate Gradient
Method for Image Restoration Using Nonsmooth Nonconvex Minimiza-
tion,” SIAM Journal on Imaging Sciences, vol. 3, no. 4, pp. 765-790,
2010.

[15] Z. Chen, and S. Haykin, “On Different Facets of Regularization Theory,”
Neural Comput., vol. 14, no. 12, pp. 2791-2846, 2002.

[16] F. H. Clarke, Optimization and Nonsmooth Analysis. New York: Wiley,
1983

34

[17] A. P. Engelbrecht, “A new pruning heuristic based on variance analysis
of sensitivity information,” Neural Networks, IEEE Transactions on,
vol. 12, no. 6, pp. 1386-1399, 2001.

[18] L. Fletcher, V. Katkovnik, F. E. Steffens, and A. P. Engelbrecht, “Op-
timizing the number of hidden nodes of a feedforward artificial neural
network,” in Proc. IEEE world congress on computational intelligence,
The international joint conference on neural networks, 1998, pp. 1608-
1612

[19] J. Friedman, T. Hastie, and R. Tibshirani, “A note on the group lasso
and a sparse group lasso,” Preprint arXiv:1001.0736, 2010.

[20] M. Forti, P. Nistri, and M. Quincampoix, “Generalized neural network
for nonsmooth nonlinear programming problems,” Circuits and Systems
I: Regular Papers, IEEE Transactions on, vol. 51, no. 9, pp. 1741-1754,
2004.

[21] M. Hagiwara, “A simple and effective method for removal of hidden
units and weights,” Neurocomputing, vol. 6, no. 2, pp. 207-218, 1994.

[22] S. J. Hanson, and L. Y. Pratt, ”Comparing biases for minimal network
construction with back-propagation,” in Advances in Neural Informa-
tion Processing Systems, 1989, 177-185.

[23] S. S. Haykin, Neural networks : a comprehensive foundation, 2nd, En-
glewood Cliffs, NJ, USA: Prentice Hall, 1999.

[24] S. Haykin, Neural networks and learning machines. McMaster Univer-
sity. Hamilton, Ontario, Canada.: Prentice Hall, 2009.

[25] T. Heskes, and W. Wiegerinck, “A theoretical comparison of batch-
mode, on-line, cyclic, and almost-cyclic learning,” Neural Networks,
IEEE Transactions on, vol. 7, no. 4, pp. 919-925, 1996.

[26] G. E. Hinton, “Connectionist learning procedures,” Artificial intelli-
gence, vol. 40, no. 1, pp. 185-234, 1989.

[27] W. W. Hsieh, Machine Learining Methods in the Envriomental Sciences.
Cambridge, U.K.: Cambridge Univ. Press, 2009

35

[28] http://archive.ics.uci.edu/ml/

[29] S. C. Huang, and Y. F. Huang, “Bounds on the number of hidden neu-
rons in multilayer perceptrons,” Neural Networks, IEEE Transactions
on, vol. 2, no. 1, pp. 47-55, 1991.

[30] T. Q. Huynh, and R. Setiono, ”Effective neural network pruning using
cross-validation,” in Proc. IEEE international joint conference on neural
networks (IJCNN),2005, pp. 972-977.

[31] M. Z. Iskandarani, “A novel Approach to System Security using Derived
Odor Keys with Weight Elimination Neural Algorithm (DOK-WENA),”
Trans. Mach. Learn. Artif. Intell., vol. 2, no. 2, pp. 20-31, 2014.

[32] Z. Li, W. Wu, and Y. Tian, “Convergence of an online gradient method
for feedforward neural networks with stochastic inputs,” Journal of
Computational and Applied Mathematics, vol. 163, no. 1, pp. 165-176,
2004.

[33] W. Lu, and J. Wang, “Convergence analysis of a class of nonsmooth gra-
dient systems,” Circuits and Systems I: Regular Papers, IEEE Transac-
tions on, vol. 55, no. 11, pp. 3514-3527, 2008.

[34] P. May, E. Zhou, and C. Lee, “A comprehensive evaluation of weight
growth and weight elimination methods using the tangent plane algo-
rithm,” Int. J. Adv. Comput. Sci. & Appl.,, vol. 4, no. 6, pp. 149-56,
2013.

[35] J. O. Moody, and P. J. Antsaklis, “The dependence identification neural
network construction algorithm,” Neural Networks, IEEE Transactions
on, vol. 7, no. 1, pp. 3-15, 1996.

[36] J. E. Moody and Thorsteinn S. Rögnvaldsson, “Smoothing regularizers
for projective basis function networks,” CSETech. 1996.

[37] B. D. Ripley, Pattern Recognition and Neural Network. Cambridge,
U.K.: Cambridge Univ. Press, 2008.

[38] D. Sabo, and X.-H. Yu, ”Neural network Dimension Selection for dy-
namical system identification,” in Proc. IEEE international conference
on control applications, 2008, pp. 972-977.

36

[39] R. Setiono, and L. C. K. Hui, “Use of a quasi-Newton method in a
feedforward neural network construction algorithm,” Neural Networks,
IEEE Transactions on, vol. 6, no. 1, pp. 273-277, 1995.

[40] R. Setiono, “A penalty-function approach for pruning feedforward neural
networks,” Neural computation, vol. 9, no. 1, pp. 185-204, 1997.

[41] J. Sum, C. S. Leung, and K. Ho, “Convergence analyses on on-line weight
noise injection-based training algorithms for MLPs,” Neural Networks
and Learning Systems, IEEE Transactions on, vol. 23, no. 11, pp. 1827-
1840, 2012.

[42] W. Sun, and Y.-X. Yuan, Optimization theory and methods: nonlinear
programming. Springer Science & Business Media, 2006.

[43] V. Tadic, and S. Stankovic, ”Learning in neural networks by normalized
stochastic gradient algorithm: local convergence,” in Proc. Seminar neu-
ral networks application electronic engineering, 2000, pp. 11-17.

[44] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society. Series B (Methodological), pp. 267-
288, 1996.

[45] J. Wang, W. Wu, and J. M. Zurada, ”Boundedness and convergence of
MPN for cyclic and almost cyclic learning with penalty,” in Proc. IEEE
International Joint Conference on Neural Networks (IJCNN), 2011, pp.
125-132.

[46] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization
by weight-elimination applied to currency exchange rate prediction,” in
Proc. IEEE International Joint Conf. Neural Netw. (IJCNN), 1991, pp.
837-841.

[47] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,” Parallel
computing, vol. 14, no. 3, pp. 347-361, 1990.

[48] W. Wu, J. Wang, M. Cheng, and Z. Li, “Convergence analysis of online
gradient method for BP neural networks,” Neural Networks, vol. 24, no.
1, pp. 91-98, 2011.

37

[49] W. Wu, and Y. Xu, “Deterministic convergence of an online gradient
method for neural networks,” Journal of Computational and Applied
Mathematics, vol. 144, no. 1, pp. 335-347, 2002.

[50] L. Wu, and J. Moody, “A smoothing regularizer for feedforward and
recurrent neural networks,” Neural Computation, vol. 8, no. 3, pp. 461-
489, 1996.

[51] L. Bottou, “Large-Scale Machine Learning with Stochastic Gradient De-
scent,” Proceedings of COMPSTAT’2010. Physica-Verlag HD, pp. 177-
186, 2010.

[52] W. Xu, “Towards Optimal One Pass Large Scale Learning with Aver-
aged Stochastic Gradient Descent,” Computer Science, 2011.

[53] S. Shalev-Shwartz, “Online Learning and Online Convex Optimization,”
Foundations & Trends in Machine Learning, vol. 4, no.2, pp. 107-194,
2012.

[54] L. Xu, J. Chen, D. Huang, J. Lu, and L. Fang, “Analysis of bounded-
ness and convergence of online gradient method for two-layer feedfor-
ward neural networks,” Neural Networks and Learning Systems, IEEE
Transactions on, vol. 24, no. 8, pp. 1327-1337, 2013.

[55] Z. B. Xu, R. Zhang, and W.-F. Jing, “When does online BP training
converge?,” Neural Networks, IEEE Transactions on, vol. 20, no. 10, pp.
1529-1539, 2009.

[56] H. Zhang, W. Wu, F. Liu, and M. Yao, “Boundedness and convergence of
online gradient method with penalty for feedforward neural networks,”
Neural Networks, IEEE Transactions on, vol. 20, no. 6, pp. 1050-1054,
2009.

[57] M. Yuan, and Y. Lin, “Model selection and estimation in regression
with grouped variables,” Journal of the Royal Statistical Society: Series
B (Statistical Methodology), vol. 68, no. 1, pp. 49-67, 2006.

[58] J. Zhang, and A. J. Morris, “A sequential learning approach for single
hidden layer neural networks,” Neural networks, vol. 11, no. 1, pp. 65-80,
1998.

38

[59] H. Zou, “The adaptive lasso and its oracle properties,” Journal of the
American statistical association, vol. 101, no. 476, pp. 1418-1429, 2006.

39

