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Abstract

Nonnegative matrix factorization (NMF) is a poputiimension reduction
technique used for clustering by extracting latdaatures from high-
dimensional data and is widely used for text miniBgveral optimization algo-
rithms have been developed for NMF with differeastcfunctions. In this paper
we evaluate the correntropy similarity cost funeti€orrentropy is a nonlinear
localized similarity measure which measures thelaiity between two random
variables using entropy-based criterion, and ise€gfly robust to outliers.
Some algorithms based on gradient descent haveuseehfor correntropy cost
function, but their convergence is highly dependemproper initialization and
step size and other parameter selection. The pedpgsneral multiplicative
factorization algorithm uses the gradient descégariahm with adaptive step
size to maximize the correntropy similarity betwélea data matrix and its fac-
torization. After devising the algorithm, its pemitance has been evaluated for
document clustering. Results were compared withtcaingd gradient descent
method using steepest descent and L-BFGS methods sifitulations show
that the performance of steepest descent and L-Bé&B8ergence are highly
dependent on gradient descent step size which depmmw parameter of cor-
rentropy cost function. However, the multiplicatigégorithm is shown to be
less sensitive to parameter and yields better clustering results tther algo-
rithms. The results demonstrate that clusterinfppmance measured by entro-
py and purity improve the clustering. The multiplize correntropy-based al-
gorithm also shows less variation in accuracy afutieent clusters for variable
number of clusters. The convergence of each algoris also investigated, and
the experiments have shown that the multiplicasilgorithm converges faster
than L-BFGS and steepest descent method.
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1 I ntroduction

Large size of data is one of the central issuedaita analysis research.
Processing these large amounts of data opens reesigelated to data
representation, disambiguation, and dimensionaditiuction. A useful repre-
sentation typically makes latent structure in th&adexplicit, and often reduces
the dimensionality of the data so that additiomathputational methods can be
applied. In this process it is important to redtiee data size without losing its
most essential features. Therefore, a common grivutine various approaches
of data mining is to replace the original data wahlower dimensional
representation obtained via subspace approximitidh 4].

There are several methods to reduce the dimengioo&large data such as
Principal Component Analysis (PCA), Singular ValDecomposition (SVD)
and Independent Component Analysis (ICA). Oftendai to be analyzed is
nonnegative, and the low-rank data are furtherirequo be comprised of
nonnegative values in order to avoid contradicphgsical realities. However,
these classical tools cannot guarantee to maitttainonnegativity [1]. There-
fore, an approach of finding reduced rank nonnegdtictors to approximate a
given nonnegative data matrix becomes a naturalcehdhe Nonnegative
Matrix Factorization (NMF) approach allows to cesatlower rank data out of
original data, while maintaining nonnegativity oétrces entries [1, 2, 3].

The NMF technique approximates a data matrinith the product of low
rank matrice/ andH, such thal ~ WH and the elements #f andH are
nonnegative [1,2]. If columns &f would be data samples, then the columns of
Wcan be interpreted as basis or parts from which damples are formed,
while the columns off give the contribution of each basis which when com
bined form the corresponding data sample. In agijpdin of NMF to cluster-
ing, it is common to define clusters based on dxdis vector, and assigning
each data sample to a cluster based on basismgitn intensity which is
found from matrixH.

Several cost functions have been used in the tliterao implement the
NMF for various types of applications and data tyjpeclidean distance is the
most common cost function used for many applicatimeluding text mining
[1]. Kullback-Leibler divergence (KL-divergence),[2], §-divergence [21,
22] are among other methods also used for diffexpplications. However, the
main issue is to find the matrix factodd’ (H) that minimize the chosen cost
function. There are several optimization algoritimshe literature to perform
this optimum decomposition [3, 4, 8, 10, 11, 12ri€ntropy similarity func-
tion is a recently proposed cost function which basn used for different



tasks of pattern recognition [23]. It has beenoiditiced to NMF only recently
in [24, 25, 26]. In this paper, a multiplicativigarithm for correntropy-based
NMF (MACB-NMF) has been developed and its perforoghas been inves-
tigated in comparison to general gradient descetihaa for document cluster-
ing application using several metrics.

This paper is organized as follows. Section 2 chices the correntropy cost
function. Section 3 discusses some developed agtioh algorithms for
NMF. In section 4, a multiplicative update algomitfior correntropy cost func-
tion (MACB) is presented. Experiments on real datare presented in Sec-
tion 5. The discussion and conclusions are predént8ection 6.

2 Correntropy Similarity Function

Given a data matrid € R™" and a positive integér < min{m.n}, find
nonnegative factorization into matricgse R™** andH € R¥*™ as

TR D(A|WH) subjectto W > 0,H >0 (D
where:

A = 0 expresses nonnegativity of the entriesd¢dnd not semidefi-
nite positiveness),
D(A|WH) is a measure for goodness of fit such that

DAIWH) = > d([Al | [WH]) @

i=1j=1

where:
d(x|y) is a scalar cost function [22].

Several cost function are used and most of theenthe Bregman diver-
gence [7]. Generally, a divergence function isridi as follows

a® — b*

D(a,b) =% +b%b—-a) :a€((01]
a(loga—logh)+(b—a) :a=0

(3)

where:
a is chosen to define the type of the divergencetfan.
Obviously, D;(a,b) = (a — b)? is the Euclidean distance function, and
Dy(a, b) defines KL-divergence [13]. The most common fumetfound in
literature is shown below



m n
1 2
Dgyciigean(AIWH) = z ZE (Aij - (WH)ij) “)
Using the above notation, the correntropy costtionds defined as

—(a—b)?
dcorrentropy(alb) = —exp T (5)

R A — (WH);
Dcorrentropy(A|WH)=_zze ( ( ! ( )])> (6)

252
i=1j=1

where:
o is a parameter of correntropy measure.

The optimization algorithms try to minimize tkerrentropy, since it is a
similarity instead of distance between two elemente algorithm for mini-
mizing these cost functions is introduced in thet isection.

3 Optimization Algorithms

A key issue of NMF factorization is to minimize tleest function while
keeping elements &% andH matrices nonnegative. Another challenge is the
existence of local minima due to non-convexityDg#d|WH) in bothiW and
H. Moreover, a unique solution to NMF problem doesexist, since for any
invertible matrixB whose inverse i8~1, a termWBB~1H could also be
nonnegative. This is most probably the main rea®onnon-convexity of
D(A|WH) function [13].

Several algorithms exist for minimizing cost functs in the NMF context.
Lee and Seung [1, 2] developed a multiplicativeoatgm for solving Euclid-
ean and KL-divergence in 2001. Sparse Coding amassepess constraint
which impose sparsity ai matrix was proposed by Hoyer in 2002 and 2004
[3, 5]. Alternating Least Square (ALS) [12], ALSing projected gradient
descent (ALSPGRAD) [14], gradient descent with taised least square
(GD-CLS) [9], Quasi Newton method [11], Alternatiddpnnegative Con-
strained Least Squares (ANLS) using active settdock principal pivoting
[17, 20], Hierarchical Alternating Least Square (t8} [19] was proposed for



Euclidean cost function. Fevotte et al proposacrseg algorithms for mini-

mizing B-divergence cost function [21, 22]. In 2012, Liabtconvert general
Bregman divergence to Euclidean distance functisinguTaylor expansion
and solve the corresponding function using HALSoatgm [25]. Du et al

proposed a half-quadratic optimization algorithnsédve NMF based on cor-
rentropy cost function and developed a multipligatalgorithm for resulting
weighted NMF [26].

In 2012, Ensari et al used general algorithms afsftained Gradient De-
scent (CGD) method for solving the correntropy tiorc [18] and compared
the results with projected gradient descent metifdgluclidean cost function
[24, 25]. The major disadvantage of CGD is its aefgmcy orv parameter of
correntropy cost function. As will be shown in thext section, the update
rate of CGD algorithm is based on this parametethé next section, we de-
rive the CGD algorithm based on multiplicative uggdeule which has adap-
tive update learning rate and less sensitivityaation ofa parameter.

4 Multiplicative Algorithm for Correntropy-based NMF

This section proposes a multiplicative algorithm dorrentropy cost function
(MACB). To minimize (6) using gradient descent aiton, its gradient
should be taken with respect W andH matrices’ elements which are param-
eters of cost function. The gradiem'ﬁ(D(p), Vy(Dy)are calculated as fol-
lows,

—(A—WH)?
202

Vi (D (AIWH)) =1/ _, exp( )@(WH—A)] H" (7)

—(A — WH)?
Vu(Dp(AIWH)) =1/ T [(WH — A)Oexp <%>] ©

where:
© is the element-wise product of two matrices.

As can be seen from Equations (7) and (8), theignt formula involves
the step size in the direction of gradient thaprisportional tol /o2 parame-
ter. Therefore, the gradient step variation cowdse the solution to deviate
from the limit points of the feasible region. Ty result in unsatisfactory
solution foriW andH.



The multiplicative gradient descent approactgsivalent to updating each
parameter by multiplying its value at previous aten by the ratio of the
negative and positive parts of the gradient ofdbst function with regard to
this parameter [2, 11]. Suppose there is a fungtiofh) which should be min-
imized overd. Gradient descent using multiplicative algoritheneiquivalent
to,

[V f(&)]-
0 « 0 m (1)
where:
Vi @) =[Vf (Ol [Vf(O)]- (10)

and the summands are both nonnegative. This ensorasegativity of the
parameter updates, provided initialization is vathonnegative value. A fixed
point6* of the algorithm implies eithéff (6_) = 0 or6* = 0 [21, 22]. We
apply this algorithm on Correntropy function gradse Equations (7) and (8),
and derive the update formula ¢ andH matrices respectively as follows,

[Vw (D (AlIWH))]—

[V (D (AIIWH))]+ (11)

o (45 ) o
Y Jexp (FU5525) 0 Qw7 (12
H AT, -

wT [A O exp (—(AZ—TZVH)Z)]
B (W) @ exp (-(AZ-T'Q/HV)] a4

As can be seen from Equations (12) and (14)g tharameter is in numera-
tor and denominator of update algorithm, which cedthe effect of variation
of this parameter to the update algorithm. Althqugé do not prove the non-
increasing property of multiplicative update algfom with Correntropy crite-
rion analytically, the experimental results shoatti is monotonic and non-



increasing. It also give better results in commarito other gradient descent
methods. Therefore, MACB algorithm for NMF is aidwss:

MACB-NMF Algorithm:

(2) Initialize W andH with nonnegative values, and scale the columnig’ o6 unit
norm.

(2) Iterate until convergence or foiterations:
([(exe(*5#) o),

(EE=mp

(o lacen{azm))

202

o ormom )

202

(@) Wi « Wy foriandj [e = 1077]

(b) H;; < H;; foriandj [e = 1077]

5 Experiments

This section outlines the design procedure of gredment to test MACB
algorithm. We employ Reuters Documents Corpus fmuchent clustering.
This original dataset contains 21578 documentsI&@idtopics or document
clusters created manually. Each document in thpusois been assigned one
or more topics or category labels based on itsectnT he size of each cluster
which is the number of documents it contains, ranga less than ten to four
thousand. For this experiment, documents assocvaithdonly one topic are
used and topics which contain less than five docusnare discarded [9].
Therefore, 8293 documents with 48 topics weredéfthe end. In order to
evaluate the performance of the MACB for increasiognplexity, i.e., the
number of clusters to be created or khgarameter, ten differektvalues of
[2,4,6,8,10,15,20,30,40,48] are chosen.

After creating clusters using NMF, the cluster $signed to a most related
document topic. For this purpose, a matrix whicbvahthe distribution of all
documents between each created cluster and dadpset is created. The ma-
trix’s dimension isk x [, whichk is the number of clusters ah@s the number
of topics. This matrix is called Document Distrilom Matrix (DDM). The
maximum value at each column of DDM is found fifghen, the correspond-
ing document topic related to this column is assigto the NMF cluster relat-
ed to the row number. At the end of this processte may be some NMF
clusters which are not assigned to any topic. Sofrtkese clusters may con-
tain large number of documents, and omitting theay meduce the accuracy
metric. To assign these NMF clusters to a topig,ntaximum value found in a



row of DDM related to any of these NMF clustersisgd for the topic assign-
ment. It turns out that the related column of tbended value indicates the
topic to be assigned. This method may resultssigasg some of NMF clus-
ters to more than one topic.

We evaluate the clustering performance with Aacy, Root Mean Square
Residual (RMSR), Entropy, Purity, and computatiditak metrics. Accuracy
of clustering is assessed using the mettiaused by [4] is defined

AC = Z 5(d)/n (15)
i=1

where:
6(d;) is set tal if d; has the same topic label for both NMF cluster
and the original topic, and otherwise seb to
n is the total number of documents in the collection

The RMSR betweeaA andW andH matrix is defined as:

2

(A — WH;;

RMSR = Jz”( J ) (16)
m#+*n

Total entropy for a set of clusters is calcudats the weighted mean of the
entropies of each cluster weighted by the sizeaoheluster [8]. Using DDM,
we computey;; for topicj, the probability that a member of clustdrelongs
to topicj asp;; = n;;/n;, wheren, is the number of objects in clusteand
n;; is the number of documents of topim clusteri. Entropy of each cluster
is defined as:

!
e = —Z. Pii log,(pij) 17)
]=

where:
[ is the number of topics.



Entropy of the full data set as the sum of th&ropies of each cluster
weighted by the size of each cluster:

K
ny
e= Z Fei (18)
i=1

where:
k is the number of NMF clusters,
n is the total number of documents.

Purity measures the extent to which each NMF clusteragoed documents
from primarily one topic [16]Purity of a NMF clustering is obtained as a
weighted sum of individual NMF cluster Purity vadugnd is given by

P(S;) = %maxj(n{) (19
Ko
Purity = ;;P(Si) (20)

where:
S; is a particular NMF cluster of sizg,

n{ is the number of documents of the th topic that were assigned
to thej — th NMF cluster,

k is the number of clusters,

n is the total number of documents.

In general, the larger the Purity value, thadsdhe clustering solution. We
also compute the computational time taken by eaoimization algorithms in
terms of CPU time measured in second.

For performance evaluation of MACB, the resultstio§ algorithm were
compared to Steepest Descent (SD) and L-BFGS meibiogradient descent
algorithm implemented in MATLAB [18], and robust &entropy Induced
Metric (rCIM) [26]. For each algorithm, three cleshg experiments were
executed based on normalizationdfandH matrices. As mentioned before,
NMF does not have a unique solution, and it isdoeéti normalize eithéW or
H to have a consistent factorization of a particdiiaset when using different
algorithms. This procedure is also taken to inges¢é the effect of normaliza-



tion of thesé/ andH matrices on the clustering result. Therefore, mplé-
ment three experiments for each algorithm, oneowitimormalization, another
using normalization o/ matrix’s columns, and the last one with normaliza-
tion on each row afl matrix.

Sinces value has an effect on update learning rate of ISBFGS and
rCIM algorithms, improper selection efcould result in poor clustering.
However,s value have a small effect on MACB update algoritiacause
the effect ofs is significantly decreased by the division in fotenof MACB
algorithm. Moreover, the learning rate is adaptwel is proportional t&/
andH matrices in each step of MACB algorithm. By implarting several
experiments, we realize that the best value whielly the highest AC, low-
est Entropy and highest Purity in clustering fockealgorithm iss = 1. We
continue the experiment with three methods of ntizaigon for MACB algo-
rithm and compare them W-normalized case (normalization on each col-
umn of W matrix) for SD, L-BFGS, and rCIM algorithms with= 1 for
three algorithms of optimization. AC, Entropy andriB/ of clustering are
shown in Fig. 1-3 respectively,
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It is clear that MACB algorithm yields smaller Eopy and higher Purity
for all values ofk. However, SD, L-BFGS, and rCIM algorithms have low
Entropy and high Purity only fdr = [6,8,10]. On the other hand, MACB
have a consistent change in AC, Entropy, and Ptoitglifferent values ok.
Moreover, as increase, the quality of clustering improves foAGB. To
have a good comparison between all algorithms, elecstwo values ot
which results in highest AC, lowest Entropy andhieist Purity. According to
Fig.1-3, these metrics occurskin= [15,19]. Therefore we tabulate the clus-
tering result of each algorithm for correspondingalues in Table 1 and 2.

Tables 1 and 2 indicate that MACB algorithm givétéxeEntropy and Puri-
ty in comparison to the other algorithms. The RM&®&ric is also small for
MACB algorithm, while this metric is too large f&D, L-BFGS and rCIM.
This indicates a large error betwdéit! andA. One may notice that the com-
putational time of MACB and rCIM algorithms is hghthan SD and L-
BFGS algorithms. The reason is that in each stegdgufrithm, there are two
multiplications and divisions for updatig andH in MACB and rCIM algo-
rithms, which do not exist in SD and L-BFGS aldumt. The multiplication
and division of these large matrices are highly potational and time con-
suming.

As a result, we can conclude that the compitedndH matrices using
MACB algorithm offer the best approximation of dawents dataset among
other correntropy-based NMF. The minimization ofreatropy cost function
for 40 iterations is shown in Fig. 4 for all alghms. It demonstrates that
MACB algorithm has a faster convergence than SBHAGS and rCIM algo-
rithms. Gradient minimization curve fér= 20,30,40,48 is shown in Fig. 5.
It indicates that as the value loincreases, the gradient minimizes more slow-
ly. This implies that the algorithm reaches theitlipoint of feasible region,
and the constraint of nonnegativity does not altbevoptimization algorithm
to converge. We propose that other algorithms éikernating least square
method with nonnegativity constraint and hierarahiLS could be investi-
gated on this case for future work.



Table 1. Comparison between performance of different NMPoatgms, k=15

Algorithm k RM SR Accuracy Entropy Purity CPU time (sec)
SD(W-normalized) 15 1983 0.9401 2.8834 0.4582 552
I(_\;\EESrf‘nalized) 15 2517 0.1469 2.8634 0.4496 602
mﬁfrmalize " 15 | 03328 | 05530 1.8920 0.6514 2353
?ﬁﬁr?o?malized) 15 0.3328 0.7528 1.9191 0.6551 2353
Table 2. Comparison between performance of different NMPoatgms, k=20
Algorithm k RM SR Accuracy Entropy Purity CPU time (sec)
SD(W-normalized) 20 53594 0.8961 2.8616 0.4527 535
I(_\;\Ila,-lr:lcc);‘r?nalized) 20 17.75 0.6274 2.8399 0.4496 605
?\"A‘/“tr']g'r'rcnﬁ::’; 9 20 0.9776 |  0.5507 1.8094 0.6475 2513
(“ﬁ'“:'g’r':flgtl:‘z’z d) 20 0.9776 0.5360 1.8567 0.6479 2513
. leog Corr‘entropy ?ost functfon minim‘ization, k‘=15 |
—SD
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15 20
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Fig 4. Correntropy cost function minimization curve
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6 Conclusion

In this paper, a multiplicative algorithm for NMFaded on correntropy cost
function (MACB) is developed. Its performance wastéd on the Reuters
Document Corpus for document clustering. The elusg result is also com-
pared to gradient descent algorithm using SD amFGS algorithms using
common clustering evaluation measures. The minitmizaurve and gradient
curve of cost function are also investigated. Tésult proves that MACB
algorithm gives more accurate and stable cluskens tther two methods and
shows faster convergence as well. However, it shiwat by increasing the
number of NMF clustersk(value), gradient curve of cost function does not
converge appropriately. For future work, we propthse other minimization
algorithms like ALS, ANLS, and HALS could be useor improving this
problem.
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