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Abstract. This paper presents a model of a network of integrate-and-fire neurons with time
delay weights, capable of invariant spatio-temporal pattern recognition. Spatio-temporal pat-
terns are formed by spikes according to the encoding principle that the phase shifts of the

spikes encode the input stimulus intensity which corresponds to the concentration of con-
stituent molecules of an odor. We applied the Hopfield’s phase shift encoding principle at the
output level for spatio-temporal pattern recognition: Firing of an output neuron indicates that

corresponding odor is recognized and phase shift of its firing encodes the concentration of the
recognized odor. The temporal structure of the model provides the base for the modeling of
higher level tasks, where temporal correlation is involved, such as feature binding and seg-
mentation, object recognition, etc.
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1. Introduction

1.1. OLFACTION

In the olfactory bulb odor stimulus information is encoded into a periodic spatio-

temporal pattern of oscillatory neural activity (Hoshino et al., 1998 Skarda and

Freeman, 1987; Laurent and Davidowitz, 1994; Laurent, 1996). Specific spatial pat-

terns of synchronized firing are correlated to a certain constituent molecules of the

applied odor. Relative time advances of the appearances of these spatial patterns are

correlated with the concentrations of the molecules. This spatio-temporal correlation

enables odor recognition and concentration estimation in the olfactory cortex (Hop-

field, 1995; Hoshino et al., 1998). The olfactory epithelium of a nasal cavity contains

hundreds (say n) of receptors sensitive to various types of molecules (Ressler, 1994).

Thus, epithelium perceives odors, basically, as the mixtures of their components

(different molecules). It is convenient for the odors to be represented by the con-

centration vector C ¼ fc1; c2; . . . ; cng, where cj is the corresponding concentration of

the jth odor component.

During sniffing constituent molecules of an odor cause receptor neurons (that are

equally distributed in the olfactory epithelium) to fire, producing spikes (Duchamp-
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Viret et al., 1998; Ressler, 1994). A firing pattern in the receptor field is then mapped

to the olfactory bulb. Axons from the same receptors of olfactory epithelium go to

the corresponding ensembles of the neurons in the olfactory bulb (Ressler, 1994). So,

each ensemble of neurons in the olfactory bulb represents a corresponding consti-

tuent molecule of the odor. Once they receive impulses from the receptor level, the

neurons in the ensembles synchronize their activity. They fire synchronously within

each ensemble, and with the time shifts between different ensembles (Hoshino et al.,

1998; Laurant and Davidowitz, 1994). As a result, the odors at the bulbar level are

presented by the sequence of firing of different neural ensembles, where the specific

neural ensembles represent the odor constituent molecules and the time shifts of the

firing of these ensembles represent the concentrations of the constituent molecules

(Hoshino et al., 1998; Duchamp-Viret et al., 1996).

The larger is the concentration cj of a constituent molecule, the earlier the cor-

responding ensemble gets excited and synchronized (Campbell andWang, 1998) and

the greater is the time jj the jth ensemble fires in advance of the moment of the

maximum of its subthreshold activation, which serves as a reference time (Hopfield,

1995). So, the corresponding concentrations cj of n constituent molecules can be

encoded as time advances j1;j2; . . . ;jn of ensemble’s firing presented as:

jj ¼ tj � t
ðrÞ ð1Þ

where tj is the time of the ensemble’s spike and tðrÞ is the reference time mentioned

above. The relationship (2) between input concentrations cj and corresponding time

advances jj has been proposed in the Hopfield’s model (Hopfield, 1995), where each

time advance is proportional to the logarithm of the corresponding concentration, a
is a coefficient and d is a scale factor.

jj ¼ a lnðcj=dÞ ð2Þ

The logarithmic scaling makes the relative phase pattern invariant to the different

concentrations of the same odor. In this case, not the relative, but the entire pattern is

shifted when the odor concentration is changed.

1.2. OLFACTORY PATTERN RECOGNITION MODELING

In most of the functional olfactory models reported in the literature the authors focus

on the spatio-temporal pattern formation at the olfactory bulb level. The basic

principles of pattern formation presented above are more or less understood

and they are supported by the biological experiments (Duchamp-Viret et al.,

1998; Hoshino et al., 1998; Laurent and Davidowitz, 1994; Laurent, 1996). However,

the mechanism by which these spatio-temporal patterns (Figure 1(a)) are recognized

and then processed at the next, olfactory cortex level, remains, basically, unknown.

One of the plausible biological mechanisms of spatio-temporal pattern recognition

is a system with an appropriate set of delays stored in synaptic memory followed by

coincidence time detectors that receive these appropriately delayed (and now syn-

chronized) signals. Recognition of a stored odor can be indicated by firing of the
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corresponding coincidence time detector neuron (Hopfield, 1995; Natschlager and

Ruf, 1998; White et al., 1998). The question that arises is how the concentration of

the recognized multi-component odor is represented at the olfactory cortex?

Experimental evidence indicates that time shift encoding of stimulus intensity

occurs not only at the bulb level, but at olfactory cortex level as well (Duch-

amp-Viret et al., 1996, 1998). This supports the idea that time shift encoding is

also used at the ‘output level’ of the olfactory system, i.e. at the olfactory cortex.

It also indicates that the mechanism of this encoding could be similar to the one at

the olfactory bulb.

However, most of the olfactory pattern recognition models do not make use of

temporal encoding and temporal processing. In such models the patterns to be

recognized are ordinary time independent vectors that represent certain odor qua-

lities. Those vectors are then recognized by one of the classical pattern recognition

techniques, which do not have much in common with biological temporal processing.

Temporal encoding and temporal processing have only recently been included in

the olfactory pattern recognition modeling. Significant progress in this direction has

been made by White et al. (1998). In their model vapor identity is encoded by the

spatial code across output units, and vapor intensity is represented by response

latency. The system is not only biologically relevant (at some extent), but also proved

to be more effective than classical neural networks models. Its percentage of correctly

identified test patterns was higher than the one of the feed-forward neural network

with hidden layer (82% and 71% correspondingly) (White et al., 1998).

However, the model of White et al. is not complete. Odor intensities are encoded

just qualitatively: shorter response latency signifies greater concentration (and vice

versa), but no precise functional correspondence exists between response latency and

odor concentration. Moreover, the model as it is shown in (White et al., 1998) works

only in the very narrow range of relative concentrations. Our proposed model imple-

ments precise functional encoding of the pattern intensity, that is odor concentration,

with the phase shifts of the output neuron firing. The odor recognition remains

invariant within broad range of concentrations due to the Hopfield’s logarithmic

intensity encoding.

2. Model

Our network consists of one layer of m leaky integrate-and-fire neurons fully con-

nected with n temporal inputs. These inputs simulate spatio-temporal patterns

formed in the olfactory bulb (Figure 1(a)), and the neural layer (Figure 1(b)) cor-

responds to the olfactory cortex that receives and recognizes those patterns. The

periodic inputs sjðtÞ for j ¼ 1; . . . ; n are expressed by Dirac delta function:

sj ¼ b
X1

k¼1

dðtþ jj � kTÞ ð3Þ

where T is the period of the signal’s oscillation. The time advance jj of a periodical

input spike can be expressed in terms of its phase advance fj related to the reference
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phase fðrÞ (which corresponds to the zero time advance) as: jj ¼ fj=o, where

w ¼ 2p=T. In order to distinguish periodical time advances of the input spikes from

the constant time delays stored in the network, further in the paper we will call the

time advances jj as the phase shifts jj, related to the reference phase jðrÞ. Thus, the

phase shifts jj of the signal’s spikes encode concentrations of the n corresponding

constituent molecules (2). An example of input pattern is shown at Figure 1(a).

During each cycle the spikes arrive to the neural layer with the delays equal to their

phase shifts jj. Then the spikes acquire additional time delays dij stored in the

synaptic connections. So, the total time delays of the signals that arrive to ith neuron

are equal to jj þ dij.

Each neuron in the layer (Figure 1(b)) is characterized by its state–membrane

potential ui, ði ¼ 1; . . . ;mÞ. Every time a neuron receives a spike, its potential

ui is increased by the weighted value of that input spike: wijsjðt� dijÞ. At the same

time the potential ui is constantly decreasing with decay coefficient k as follows:

duiðtÞ

dt
¼ �kuiðtÞ þ

Xn

j¼1

wijsjðt� dijÞ ð4Þ

When the potential of a neuron reaches its threshold value uthresh, neuron fires

(Figure 1(c)), and its potential ui is instantly reset to 0 as shown below.

uiðt
�Þ ¼ uthresh ) uiðt

þÞ ¼ 0 ð5Þ

The coefficient b in (3), that is equal to uthresh=n, scales the value of input spikes. So,

only all spikes added together are able to increase the value of potential to uthresh. As

well as the membrane potential ui is constantly decreasing (4), the spikes that arrive

with big time intervals one after another fail to significantly increase the potential’s

Figure 1. Pattern formation and encoding in the olfactory system model: (a) synthetic input pattern where

sjðtÞ are the input signals, jj – phase shift of the input signals, jðrÞ – reference phase as in Equation (1); (b)

network of integrate and fire neurons; (c) output pattern: ui – membrane potential of the output neurons.
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value. They have to arrive within a narrow time interval (almost simultaneously) to

the neuron in order to increase its value to uthresh. Odor patterns are stored in the

network memory by the delays dij between inputs and the neurons. The delays are set

in such a way to make each of n spikes arrive simultaneously to the neuron if the

applied pattern is equal to the pattern stored:

dij ¼ jðiÞ
st j � min

j
fjðiÞ
st jg ð6Þ

where jðiÞ
st is a phase vector of ith stored pattern.

When a stored odor pattern is applied, the total input
Pn
j¼1 wijsjðt� dijÞ to the

neuron i has to be equal to or more than uthresh in order to increase the membrane

potential ui by this value and make it fire (Figure 1c). So the weights have to be

determined as follows:

wij5
uthreshPn

j¼1 sjðt� dijÞ
ð7Þ

The neuron fires simultaneously with the last arriving spike, so the phase shift of

the output spike is equal to the minimal input phase shift (or phase shift of the

weakest component), as shown in Figure 2.

If the pattern applied is not close enough to any of stored odor patterns (of any

concentration) spikes arriving with significant time intervals will not make output

neuron fire because of its exponential decay. Output potentials in Figure 1(c) show a

superthreshold firing of neuron #5 with the phase shift jout i and subthreshold activity

of all other neurons. This indicates that odor #5 with some concentration is recognized.

Due to logarithmic scaling in Equation (2) the global phase of the entire pattern is

shifted when the odor concentration is changed, while the relative phase shifts remain

Figure 2. Recognition of the patterns of the same odor with different concentrations.
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the same. This makes pattern recognition of the model invariant to the different

concentrations of the same odor. Figure 2 shows an example of two patterns of the

same odor with different concentrations. Phase shift of the entire pattern (a) is

greater than of the pattern (b), though the pattern itself is the same. Thus, the

output spike phase shift at (a) is greater than at (b). So, the odor concentration

of the pattern (a) is greater.

Concentration of entire odor cout i is defined as relative concentration of odor

applied to the corresponding odor stored. This concentration is decoded from

the output spike phase shift jout i and the minimum phase shift of the corresponding

stored pattern min
j
fjðiÞ
st jg (Figure 2) by the inverse function of Hopfield’s encoding.

cout i ¼ d exp½ðjout i � min
j
fjðiÞ
st jgÞ=a� ð8Þ

3. Simulation Results

In our computational simulation the stimuli are 4-dimensional (n ¼ 4) concen-

tration vectors C (as defined above). Four input neurons produce the spatio-tem-

poral patterns that correspond to the applied stimuli. 10 output neurons (m ¼ 10)

correspond to 10 stored odors. The concentration of their components varied from 1

(threshold concentration) to 10. Concentration of the components of the odors tested

varied from 1 to 70.

Two basic parameters were to be optimized during the simulation: exponential

decay coefficient k (4) and corresponding weights wij (7). The system is quite sensitive

to both of them. With wij determined by Equation (7) with the equality sign, or with

decay coefficient k� 1, the system can recognize undistorted stored patterns only.

When weights increase or k decreases the network becomes more flexible (the recep-

tive regions of the neurons get larger). However, the greater the receptive region, the

worse the system accuracy is. So, certain compromise had to be found. For our

system the highest success rate of recognition (shown in Table I) was achieved with

k ¼ 6:3, and wij ¼ 1:32; 8i; j. Period T and threshold uthresh were arbitrary selected as

follows: T ¼ 50, uthresh ¼ 1. The coefficients a and d define the scale of the trans-

formation (2). They were chosen as: a ¼ 10, d ¼ 1, that makes the maximum phase

difference of the spikes (that is T ¼ 50) correspond to the relative concentration of

the odor components equal to 150.

Example of a simulated input pattern is shown at Figure 3(a). This signal is a

repeating sequence of four spikes corresponding to applied odor f63; 96; 48; 10g

Table I. Characteristics of the model performance

Patterns applied 5000

Odors recognized 10.3%

Successful recognition 81%

Incorrect recognition 19%
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which was chosen for illustration purpose. Figure 3(a) shows the activity patterns of

two neurons. Only neuron #5 reaches the threshold and fires. This indicates suc-

cessful recognition of odor #5. Neuron #1 does not reach the firing level, so the odor

#1 is not recognized.

In our experiment 5000 randomly generated test odors have been presented to the

system. A total of 89:7% of them caused the output neurons to produce the sub-

threshold activity only (odors were not recognized). A total of 10:3% of the test-

stimuli provoked superthreshold firing of output neurons (odors were recognized). A

total of 81:0% of them were recognized correctly (both odor and concentration),

with allowed concentration error equal to 20%.

For the sake of testing the proposed model, each applied odor is projected onto the

distance–concentration coordinate system. The purpose of the test is to determine if

our model correctly classifies an input odor as resembling one of the stored odors, or

leaves the input odor unclassified if it does not resemble any of them. The resem-

blance is expressed using a metric introduced in the Appendix. The stored odors have

a certain distribution in the concentration space. The distance D between the arbi-

trary input odor and its closest neighbor amongst the stored odors allows for testing

our model.

The inputs that caused an output to fire are indicated as points in Figure 4(a).

Majority of these points are gathered in the region of small D with various concen-

trations. This indicates that the odors which caused an output to fire were indeed close

to one of the stored odor patterns. The concentration level of the input odor does not

affect the models ability to classify the input as one of the known odor patterns.

On the other hand, all other input odors which did not cause an output to fire are

shown as points in Figure 4(b). These points tend to have large values of distance

function D. Any input odor that is too far from all of the stored patterns fails to

Figure 3. Simulated input and output patterns: (a) input pattern of an example odor f63; 96; 48; 10g; (b)

Output patterns of the 1st, and 5th neurons (both are shown on the same picture). There is a super-

threshold firing of the neuron #5, and substhreshold activity of neuron #1. Odor #5 is recognized.
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activate the model outputs. Even strongly concentrated odors stay unclassified if they

lack resemblance to one of the stored patterns.

In order to compare Figure 4(a) and (b) a vertical division line is drawn. The line

separates the classified points from the unclassified ones in terms of the distance

Figure 4. Distribution of the simulation results. (a) Patterns correctly recognized. (b) Patterns that are not

recognized.
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value D. Points to the left from the line manifest a resemblance to one of the stored

pattern odors and hence activate the output of the model. Most of the points stay on

the right side of the division line, as no stored pattern claims such resemblance.

Remarkably, the division line is vertical, which means that Hopfield’s principle works

well separating the odor ‘flavors’ from their concentrations.

4. Discussion and Conclusion

Recognition of a single pattern is only one of the first stages of sensory information

processing. The higher-level problems of multi-pattern processing, such as object

recognition in real world, feature binding and segmentation, object-background

separation, attention focusing, etc. are much more difficult to model and they

are far from being handled by modern computational methods. However, all these

tasks are efficiently performed by cortical neural networks of animals and humans,

where different temporal correlation types are believed to be the underlying prin-

ciple of these abilities (Campbell and Wang, 1998; Malsburg and Buhmann, 1992;

Malsburg and Schneider, 1986).

Temporal correlation plays an essential role in olfactory systems as well. Experi-

mental results prove that several odors in a mixture are separated temporally from

each other at some of the higher levels (Jinks and Laing, 1999). One of the possible

ways to do such a temporal segregation is using temporal correlation and competi-

tion of output neurons (or neural ensembles) and inhibitory top-down feedback to

input level in order to temporally segregate recognition of different odors, suppress

noise or irrelevant inputs and focus attention on the necessary odor (Campbell and

Wang, 1998; Malsburg and Buhmann, 1992; Malsburg and Schneider, 1986). Phase

encoding, that is a specific example of temporal correlation is the basic principle of

our model and we believe it provides the base for the solution of the higher level

processing tasks presented above.

Appendix

This section introduces the transformation of odor vectors to the distance-concen-

tration space. Each component cj of applied odor vector, C, is logarithmically trans-

formed as in (2) to the corresponding components jj of phase vector j. In the same

way m stored vectors c
ðiÞ
st , i ¼ 1; . . . ;m are transformed to m vectors jðiÞ

st , where

jðiÞ
st ¼ fjðiÞ

st j; j ¼ 1; . . . ; ng.

Vectors jðiÞ
st and j are normalized in the phase space in the following way:

jðiÞ�
st ¼ fjðiÞ

st j � min
j
fjðiÞ
st jg; j ¼ 1; . . . ; ng ð9Þ

j� ¼ fjj � min
j
fjjg; j ¼ 1; . . . ; ng ð10Þ
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Each applied and then normalized phase vector j� ¼ fjj; j ¼ 1; . . . ; ng. is charac-

terized by its distance D to the closest of the jðiÞ�
st . This distance D is defined as:

D ¼ min
i
fkj� � jðiÞ�

st jjg ð11Þ

Thus D defines distance in the phase space from the vector applied to the closest of

the stored vectors.
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