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Abstract
This paper presents an optimization framework for improving case-based
computer-aided decision (CB-CAD) systems. The underlying hypothesis
of the study is that each example in the knowledge database of a medical
decision support system has different importance in the decision making
process. A new decision algorithm incorporating an importance weight for
each example is proposed to account for these differences. The search for
the best set of importance weights is defined as an optimization problem
and a genetic algorithm is employed to solve it. The optimization process
is tailored to maximize the system’s performance according to clinically
relevant evaluation criteria. The study was performed using a CAD system
developed for the classification of regions of interests (ROIs) in mammograms
as depicting masses or normal tissue. The system was constructed and evaluated
using a dataset of ROIs extracted from the Digital Database for Screening
Mammography (DDSM). Experimental results show that, according to receiver
operator characteristic (ROC) analysis, the proposed method significantly
improves the overall performance of the CAD system as well as its average
specificity for high breast mass detection rates.

1. Introduction

Computer-aided decision (CAD) systems are playing an increasingly important role in medical
diagnosis, with a wide variety being proposed within the last decade (Friedman et al 1999,
van Ginneken et al 2001, Kawamoto et al 2005, Sampat et al 2005, Doi 2006). One of
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the most important tasks of CAD systems is a classification task, where an incoming query
case (e.g. a screening mammogram) has to be assigned to one of the prespecified groups
(e.g. normal/abnormal). The most popular CAD classifiers are rule-based, where a certain
number of previously acquired clinical cases (i.e. examples) is utilized to train the system.
During training, decision rules are found. Subsequently, these rules are applied for the proper
classification of new, unknown cases. In rule-based systems, all rules about decision making
are embedded into the classifier and after the classifier is trained it works independently of
the training dataset. The most common techniques for constructing such systems are based
on probability principles (Duda et al 2000) or involve artificial or computational intelligence
(Mitchell 1997). Artificial neural networks (ANNs) (Zurada 1992, Zhang 2000) are one of
the most representative examples of the second group.

Recently, case-based CAD (CB-CAD) systems (Chang et al 2001, Schmidt et al 2001,
Tourassi et al 2003, El-Naqa et al 2004a, 2004b, Tourassi et al 2007) have been gaining
popularity in the medical domain. CB-CAD systems (also called evidence-based systems)
utilize the principles of case-based reasoning (Aha et al 1991, Mitchell 1997). When
classifying an incoming query, a CB-CAD system relies on a database of stored examples
(called case base or knowledge database) which are compared to the query. The outcomes
of these comparisons (i.e. similarities/dissimilarities) are used to make a decision regarding
the query case. The main advantage of CB-CAD systems over rule-based systems is that
CB-CAD systems require virtually no training. Therefore, the knowledge database can be
constantly updated without the need for retraining the system.

With growing databases of examples, CB-CAD can be of great use. It must be stressed,
however, that in order to obtain effective systems an optimal use of the existing evidence
(clinical examples) must be assured. The CB-CAD systems currently reported in the literature
are often based on the assumption that the examples stored in the knowledge database are
equally important in the decision making process or their importance is dependent on their
order of retrieval. The goal of this study is to challenge the above practice and test whether
assigning different importance to the examples may improve the CB-CAD performance. The
study hypothesis is based on the common sense observation that when a decision is made about
a query case, its similarity to certain previous cases may be more important than similarity to
others. Furthermore, it may occur that similarity to certain previous cases is simply misleading.
The proposed framework accommodates both scenarios.

Following the study hypothesis, a new decision index is proposed that involves a vector
of weights, each of which is a measure of importance of the particular image in the knowledge
database. Then, a genetic algorithm (GA) (Michalewicz 1999, Eiben and Smith 2003) is
utilized to find the optimal weight vector. GAs have been widely used to construct and
optimize CAD tools for many clinical applications (Pena-Reyes and Sipper 2000), including
breast cancer detection (Campanini and Lanceonelli 2006). These efforts aimed mainly toward
optimizing parameters of CAD systems (Bevilacqua et al 2001, Gurcan et al 2002), optimizing
the selection of features for classification (Sahiner et al 1996, Anastasio et al 1998, Sahiner
et al 1998, Boroczky et al 2006), directly training the classifiers (Fogel et al 1998, Pena-Reyes
and Sipper 1999), as well as other applications (Peng et al 2006).

The framework proposed here is tailored to optimize the performance of a system
measured by clinically relevant indices. Receiver operator characteristic (ROC) and two
related performance indices are used to optimize and test the system. Such practice will allow
a better fit of the CAD system to clinical tasks.

The proposed optimization scheme is tested with respect to the featureless information-
theoretic CAD (IT-CAD) system presented previously in Tourassi et al (2003). The system
was developed for the automated detection of breast masses in screening mammograms. The
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approach proposed here, however, is not limited to this system and may be applied to virtually
any case-based CAD.

The article is organized as follows. Section 2 describes the original IT-CAD system.
Section 3 presents the proposed modification of the decision function based on different
importance of each example in the knowledge database. Section 4 defines the search for
the importance weights of individual examples in the knowledge database as an optimization
problem and introduces a genetic algorithm to solve it. Section 5 presents the experimental
design including data handling and performance evaluation criteria. Section 6 presents the
experimental results of the comparison between the modified and the original IT-CAD system.
The study findings and future research directions are discussed in section 7.

2. Information-theoretic computer-aided decision system

2.1. Image database

The study was based on a set of mammograms extracted from the Digital Database for
Screening Mammography (DDSM) (Heath et al 1998), collected at the University of South
Florida. The mammographic films were digitized using the LUMISYS scanner at 50 µm per
pixel. From the mammograms depicting true masses, 512 × 512 pixel regions of interests
(ROI) were extracted. The resulting 901 mass ROIs (489 malignant and 412 benign masses)
were centered on the physicians annotation. From the normal mammograms and from
abnormal mammograms without any annotations for one of the breasts, 919 normal ROIs were
extracted randomly. The normal ROIs were also 512 × 512 pixels in size. The prevalence of
mass ROIs in the database was roughly 0.5.

The IT-CAD system described in the following paragraphs was developed to determine
the presence or absence of a mass in a specific ROI. It is assumed that the ROI is centered
on a location that is suspicious enough to warrant further evaluation. Typically the suspicious
location is indicated either by a physician or a computerized, prescreening detection algorithm.
The IT-CAD provides an evidence-based second opinion using the knowledge database of
reference ROIs.

2.2. IT-CAD system overview

Figure 1 presents an overview of the IT-CAD system. The decision process is composed of
two separate steps. First, an incoming query image is compared to all images in the knowledge
database. The result of this comparison is a vector of similarity indices between the query
image and each of the images in the database. Then, this vector, along with the ground truth
for each of the images in the database, is utilized in the second step to make a binary decision,
whether a query image depicts a mass or a normal tissue.

The decision process of case-based CAD systems, and IT-CAD in particular, aims at
mimicking the radiologist’s approach to decision making. Typically, the radiologist recalls the
mammograms seen before along with their ground truth to make a proper classification for the
examined query case. To implement this process in a CAD system, the CAD designer needs to
select an algorithm for evaluating similarities between mammograms and an algorithm to make
a decision based on those similarities. The algorithms implemented in IT-CAD are described
in detail in the following sections for better understanding of the proposed improvement.

2.3. Image similarity assessment algorithm

To quantify the similarity between images, a so-called similarity measure has to be used. A
wide variety of similarity assessment methods are available in the literature. A comprehensive
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Figure 1. A block diagram of information-theoretic CAD system.

review of the topic can be found in Smeulders et al (2000). Typically image similarity
is assessed using a set of features previously extracted from images. Here, a featureless
approach is utilized. Namely, the classical statistical concept of mutual information (MI) is
used (Cover 1991, Maes et al 1997). It has been shown to be a very efficient measure of
similarity between images (Maes et al 1997) and was successfully applied in mammography
CAD (Tourassi et al 2003, 2007). In information theory, mutual information, also called
mutual entropy, describes the statistical dependence between two random variables. For
discrete random variables, mutual information I (X;Y ) is defined as

I (X;Y ) =
∑

x

∑

y

PXY (x, y) log2
PXY (x, y)

PX(x)PY (y)
. (1)

The mutual information measure can be applied to images by substituting random variables
with intensity histograms. To find the value of I between two images X and Y, P (X) and P(Y )

in equation (1) are estimated by the intensity histograms of images X and Y, respectively, and
P(X, Y ) are estimated by the 2D joint histogram of the two images (Maes et al 1997). In this
study, the normalized mutual information (NMI) index was used, defined as

NMI = 2I (X, Y )

H(X) + H(Y)
(2)

where H(X) and H(Y) are the entropies of the individual images. The normalization results
in NMI = 1 for identical images and NMI = 0 for two completely independent (i.e., unrelated)
images.

2.4. Original decision algorithm

After the similarities between the query image and the images in the knowledge database are
quantified using the NMI measure, a decision is made whether the query image corresponds
to a mass or a normal case. Several approaches to this problem have been presented (Mitchell
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1997, Chang et al 2001, Tourassi et al 2003). Tourassi et al (2003) proposed a decision index
(DI) defined as

DI1(Q) = 1

m

m∑

i=1

NMI(Q,Mi) − 1

n

n∑

j=1

NMI(Q,Nj ) (3)

where NMI(X, Y ) is the normalized mutual information between images X and Y,Q is a query
image, Mi are images corresponding to positive cases (masses), Nj are images corresponding
to negative cases (normal), m and n are the number of positive and negative cases from the
database, respectively. The two parts of this index express an average similarity to images
depicting masses and to images depicting normal tissue. If the query image is on average more
similar to images depicting masses, the average NMI with those images will be higher than
the average NMI with images depicting normal tissue which will result in a high DI value.
In contrast, when according to NMI, the query image is more similar to the images depicting
normal tissue, the value of DI will be small. Finally, a threshold on the decision index has to
be applied, such that when the decision index for a given query case is larger than the threshold
value, the query is classified as depicting a mass.

The effectiveness of the IT-CAD system was shown in Tourassi et al (2003, 2007). This
system, however, as many other case-based systems, relies on the assumption that all images
in the database are equally important when classifying a query. It is likely, however, that this is
not the case. It is easy to imagine that certain previously gathered examples are clinically more
useful in the decision making process than others. It may also be the case that some examples
in the database are misleading. The proposed optimization framework accommodates these
possibilities.

3. Proposed decision algorithm

A more general decision function is introduced below. It offers the advantage that no
assumption about equal importance of each image in the database is made a priori. It is
defined as

DI2(Q) = 1

m

m∑

i=1

wpos,iNMI(Q,Mi) − 1

n

n∑

j=1

wneg,j NMI(Q,Nj ) (4)

where wpos,i is the importance weight associated with the ith positive example and wneg,j is
the importance weight associated with the j th negative example. Low values of wpos,i or
wneg,j diminish the contribution of similarity between a query image Q and image Mi or Nj ,
respectively, to the decision index. When the weight is equal to 0, a corresponding image will
not play any role in the classification. Note also that DI1 can be treated as a special case of
DI2, where the weights are equal to 1 (equal importance of all images in the database). Having
a new definition of the decision function, the question arises of how to find the importance of
each of the images in the database. Here, the problem of finding optimal weights is formalized
as an optimization problem and a genetic algorithm is proposed to find an optimal solution.

4. Genetic algorithm to optimize decision

4.1. Definition of the optimization problem

To approach the presented problem as an optimization task, a suitable objective function (also
called a cost function) needs to be defined. Many classification performance measures can be
applied to a resulting CAD system as the objective function. In medical diagnosis, however,
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the receiver operator characteristic curve (Bradley 1997, Obuchowski 2003, Fawcett 2006) is
of particular interest and has been widely used to assess CAD classifiers. The ROC curve
illustrates the relation between true positive fraction (TPF) and false positive fraction (FPF)
for the full range of possible decision thresholds. For a given decision threshold, TPF and
FPF are defined as

TPF = TP

TP + FN
FPF = FP

TN + FP
where TP is the number of true positive, FN is the number of false negative, FP is the number
of false positive and TN is the number of true negative decisions. TPF is also known as
sensitivity while (1 − FPF) is known as specificity.

A desired classifier has high values of TPF for all possible values of FPF. The overall
performance of a classifier can be measured by the area under the ROC curve (AUC) or
partial AUC (pAUC). A larger AUC value indicates better overall performance of the classifier
(the maximum possible value is 1). pAUC index is of particular interest in medical decision
problems, as it reflects the performance of a system when operating at the high sensitivity
range. pAUC denotes the area under the ROC curve that is above the TPF = p line.

In the proposed framework, either AUC or 0.9AUC index is utilized for optimization to
show that the system can be optimized according to a selected, clinically relevant figure of
merit. In this study, the non-parametric Wilcoxon approach (Bradley 1997) of estimating AUC
and pAUC was used. Note that, for a given set of examples in the database, the performance
of the system measured by AUC and 0.9AUC depends solely on the vector w (see (4)) where
w denotes the vector of importance weights. Therefore, the objective function is a function of
w and will be denoted simply as f AUC (w) or f 0.9AUC (w) . Since there is one weight assigned
to each example (wpos,i to positive examples and wneg,i to negative examples), the length of
the vector w is equal to the number of cases (n + m) in the database of the system.

The presented problem can now be defined as the problem of finding a vector w∗ such
that ∀wf AUC (w) � f AUC (w∗) and formally finding

w∗ = arg max
w

[f AUC (w)]. (5)

When optimizing 0.9AUC, the corresponding problem is

w∗ = arg max
w

[f 0.9AUC (w)]. (6)

A large variety of optimization methods have been proposed for such optimization
problems. Selection of the optimization technique depends on the properties of the objective
function. Here, the objective function is not given by an arithmetic expression and can be
only sampled for each value of w. Furthermore, the objective function is not continuous and
thus not differentiable. For these reasons the traditional optimization techniques such as the
gradient descent (Bertsekas 1999) are not applicable. As a consequence, a genetic algorithm
was used to find a solution.

4.2. Genetic algorithm to find an optimal solution

Genetic algorithm is an optimization technique loosely inspired by the theory of natural
selection and genetics (Michalewicz 1999, Eiben and Smith 2003, Campanini and Lanceonelli
2006). The basic concept of the genetic algorithm is to treat different solutions to a problem as
competing individuals. Solutions are represented in the chromosomes (vectors of numbers) of
these individuals. The best solution evolves among the individuals by means of recombination,
mutation and selection. Each individual is evaluated according to its fitness (the better the
fitness is, the better the chances for survival and becoming a parent are), which is simply
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Figure 2. A block diagram of genetic algorithm.

a value of an objective function (i.e. f AUC (w) or f 0.9AUC (w)) in the point represented by
its chromosome (i.e. w). A diagram of a simple genetic algorithm is presented in figure 2.
Different variations of GAs can be found in the literature.

When using a genetic algorithm, one must make a decision regarding the following
properties: representation of the solutions in chromosome, population initialization, selection
algorithm, recombination technique and mutation algorithm. The following is a short
description of all these steps in the algorithm used in the study (for a more comprehensive
description of these steps, see Michalewicz (1999) and Eiben and Smith (2003)).

• Representation of solutions in chromosomes. Since a candidate solution is a vector of
weights, each chromosome has to represent a vector of real numbers. Therefore, a real-
valued representation is used such that there is a real number on each position of the
chromosome (each gene).

• Population initialization. Each position of each chromosome was initialized with a
random value in a given, problem specific, range with uniform probability distribution.

• Selection. This operation selects the parents for the next generation. Here, the stochastic
universal sampling algorithm (Gen and Cheng 1997) is used for this purpose. In this
algorithm all individuals are assigned intervals proportional to their fitness. The intervals
are placed on a line in random order. Then, starting from the beginning of the line, parents
are picked by moving along the line in equal steps. This way each individual will be
selected the expected number of times.

• Recombination. Recombination is used to generate new individuals by combining
chromosomes of selected parents. Here, the uniform (also called random or scattered)
crossover is used. It means that each gene of a child comes unaltered from one of the
parents with equal probability for both parents, for each gene.

• Mutation. Mutation operation alters selected genes in the population to introduce
additional random factor into the search. In this study, uniform mutation is used to
replace the randomly selected genes with random values uniformly distributed in the
range of the particular position.



902 M A Mazurowski et al

Additionally, in the GA used in this paper an elite selection technique was applied. This
technique assured that the best individuals always survive to a next generation.

5. Experimental design and assessment tools

To assess the effectiveness of the proposed optimization framework, the CAD system optimized
by the GA (GA-IT-CAD) was compared to the original IT-CAD system with all the patterns
in the database having equal importance.

To evaluate system performance, a ten-fold crossvalidation scheme was used. First, the
entire dataset was divided into ten equal-size mutually exclusive parts (folds). Then, each fold
was used once as a testing set leaving the remaining nine folds for CAD system development.
This data handling scheme resulted in ten splits with 1638 examples in the development dataset
and 182 examples in the testing dataset for each split.

For each split the development dataset was used to construct the GA-IT-CAD system
while the test set was left for the final testing. Construction of the system consisted of two
separate tasks. The first task was including images from the development dataset in the
knowledge database of the GA-IT-CAD system for further use in the decision making process.
The second task was to find the importance weights for the images in the database.

To complete the above tasks, the development dataset can be utilized in various ways.
One way is to include only some of the images from the training dataset in the knowledge
database of the GA-IT-CAD system. In such a case the remaining images can be utilized
as queries to calculate the objective function (f AUC (w) ) in a GA run in order to find an
optimal set of weights for the images stored in the knowledge database. This approach,
however, has significant disadvantages. Namely, not all images available in the development
dataset are included in the knowledge database of the CAD and since the excluded images
may be important for the problem at hand the performance of the resulting system could be
significantly compromised. This approach should be used only for very large development
datasets.

Since data availability is often limited in medical applications, more efficient data handling
schemes should be applied to capitalize on the available clinical cases. Consistent with many
CAD-related studies published before, the leave-one-out data handling scheme was used in
the development process of this study (Efron and Tibshirani 1993).

Initially, each of the N images from the training dataset is included in the knowledge
database of the GA-IT-CAD. Then, in the optimization process, the objective function for
each individual (f AUC (w) or f 0.9AUC (w) ) is computed in the following way: first, k decision
indices are obtained, each of them by using one of the images from the knowledge database
as a query. When Q is provided as a query to the CAD, it is temporarily excluded from
the knowledge database and the decision index is calculated according to (4). This way the
self-similarity (NMI(Q,Q)) of the image does not affect the resulting decision index. Such
calculation is repeated for all images from the database, which results in k decision indices.
The resulting decision indices along with the ground truth of the corresponding images are
used to calculate f AUC (w) or f 0.9AUC (w) using the Wilcoxon approach.

After optimization for each of the data splits, the ‘trained’ GA-IT-CAD system was tested
on the testing set (i.e. the remaining part of the available database).

To compare the optimized CAD system with the original CAD system, a paired student
t-test was used without an assumption about equal variances of the two populations to assure
conservativeness of the results. A very similar scheme for statistical comparison of two
models based on ten-fold crossvalidation is presented in Bradley (1997). Such scheme allows
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Table 1. Comparison of AUC and 0.9AUC values for the original and optimized IT-CAD. The row
‘Range’ indicates the value range of the vector w elements.

Objective AUC 0.9AUC
Original

Range [0, 1] [−1, 1] [0, 1] [−1, 1] IT-CAD

AUC 0.907 ± 0.024 0.905 ± 0.026 0.905 ± 0.022 0.894 ± 0.028 0.865 ± 0.030

0.9AUC 0.533 ± 0.104 0.532 ± 0.100 0.540 ± 0.094 0.515 ± 0.076 0.466 ± 0.091

for incorporating in the analysis the uncertainty of performance estimation due to a finite test
set as well as the random factor due to the stochastic nature of the GA.

6. Experimental results

The GA optimization was performed using the MATLAB programming environment and the
MATLAB Genetic Algorithm and Direct Search Toolbox. The following standard parameters
of the GA algorithm were used for the optimization. The number of individuals in the
population (100) and the number of generations (100) were selected to provide extensive search
without severely compromising the time complexity of the algorithm. Some experimentation
was performed to select the optimal mutation ratio (0.01). The crossover fraction of 0.8 was
a default value of this parameter as set in MATLAB.

Table 1 shows the average test performance of the original and optimized CAD systems
across all ten splits. The optimization was performed with two different objective functions:
f AUC (w) and f 0.9AUC (w) and two different ranges of w: [−1, 1] and [0, 1] resulting in four
separately analyzed scenarios (each combination of an objective function and the range of w).
The w range of [0, 1] corresponds to a situation where the minimum importance of a pattern
mean that the pattern is not considered in the decision process. When w is in the range of
[−1, 1] a situation where some patterns are misleading (weights less than 0) is also taken
into account. Thus, it is possible through a negative weight that an example will serve as an
example of the opposite class in the decision process.

It is apparent from table 1 that the proposed optimization framework improved the overall
performance of the CAD system from AUC = 0.865 ± 0.030 to AUC = 0.907 ± 0.024.
The improvement was statistically significant (two-sided p-value less than 0.0005). The best
performance was obtained when the CAD system was optimized using f AUC (w) with w
varying in [0, 1]. The overall performance with other optimization parameters (objective
function and range of w) was also statistically significantly better than the performance of
the original CAD system. The obtained results depended on the choice of the w range and
consistently better performance was obtained for the range [0, 1].

It can also be seen that the proposed optimization framework allowed for a large and
consistent improvement of the system in terms of highly clinically relevant partial area under
the ROC curve. The improvement was obtained in nine out of ten splits. The mean 0.9AUC
index improved from 0.466 ± 0.091 for the original CAD system to 0.540 ± 0.094 for the CAD
system optimized with f 0.9AUC (w) and [0, 1] range for w. The improvement was statistically
significant (two-sided p-value less than 0.001). A statistically significant improvement was
observed for all objective functions and weight ranges investigated in this study (p-value was
less than 0.05).

The ROC curves for the original CAD system and the optimized CAD systems were
reconstructed by averaging the slope and intercept parameters of ROC curves across all splits.
Parametric estimations of ROC curves were used for that purpose with the ROCKIT software
developed at the University of Chicago (Metz et al 1998a, 1998b). The reconstructed curves
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Figure 3. Averaged ROC curves: (A) GA-IT-CAD optimized with AUC and [0, 1] weight range
(- - - -), (B) GA-IT-CAD optimized with 0.9AUC and [0, 1] weight range (——), (C) GA-IT-CAD
optimized with AUC and [−1, 1] weight range (· · · · · ·), (D) GA-IT-CAD optimized with 0.9AUC
and [−1, 1] weight range (— · —) and (E) original IT-CAD system (————).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

0.92

0.94

0.96

0.98

1

False Positive Fraction

Tr
ue

 P
os

iti
ve

 F
ra

ct
io

n

A

B

C

D

E

Figure 4. Averaged ROC curves for high sensitivities: (A) GA-IT-CAD optimized with AUC
and [0, 1] weight range (- - - -), (B) GA-IT-CAD optimized with 0.9AUC and [0, 1] weight range
(——), (C) GA-IT-CAD optimized with AUC and [−1, 1] weight range (· · · · · ·), (D) GA-IT-CAD
optimized with 0.9AUC and [−1, 1] weight range (— · —) and (E) original IT-CAD system (————).

are shown in figures 3 and 4. It can be seen that the proposed optimization framework improved
the performance of the system in the regions of high specificity (for FPF = 0.1, TPF improved
from 0.583 to 0.738) as well as in the regions of high sensitivity (for TPF = 0.9, specificity
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Figure 5. A typical histogram of weights assigned to images when system is optimized with AUC
and [0, 1] weight range.

improved from 0.653 to 0.738 and for TPF = 0.95, specificity improved from 0.536 to 0.612).
The values of TPF and FPF were extracted directly from the reconstructed ROC curves.

The standard deviations shown in table 1 represent the variability introduced by the
stochastic nature of the GA as well as the uncertainly of the ROC estimation associated with
different data splits. To evaluate the variability introduced by the GA alone, for selected
splits the GA optimization experiments were repeated 20 times per split. The observed ROC
performance per split was extremely robust showing a standard deviation less than 0.002 for
AUC and less than 0.02 for 0.9AUC.

Figure 5 shows a typical histogram of the importance weights assigned to examples when
the system is optimized with AUC as the fitness function and weights vary in the range [0, 1].
The weight distribution is nearly uniform which means almost equal number of images with
high, moderate and low clinical importance. The distributions were similar when the system
was optimized with 0.9AUC as a fitness function.

As described in the previous section, the optimization process was repeated once for
each of the ten splits of the data. Such data handling allowed for analysis of consistency in
weights assigned to each particular image. Note that each image appeared in nine out of ten
development datasets. It was observed that the weights assigned to a particular image can
vary significantly including cases when a particular example has high importance (a weight
close to 1) for one split and marginal importance (a weight close to 0) for another. This
finding can be potentially explained by the fact that there are groups of similar examples. If
a particular example from such a group is assigned a large weight (i.e., high importance), the
other examples from the same group may be assigned a small weight since they have nothing
new to contribute. When the experiment is repeated with another data split, it is possible that a
different example from the same group will emerge as the representative one assigned a large
weight. Thus, it is possible to derive different representations in each optimization trial. In
terms of the optimization problem at hand, this finding suggests that there are multiple equally
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good solutions to the problem often corresponding to very different weights. Finally, GA is
not guaranteed to find an optimal solution for a given problem. Thus, for certain algorithm
runs, non-optimal weights are likely to occur, further increasing variability of weights for
particular images among runs.

7. Discussion

In this study, a new optimization framework for case-based CAD systems was presented. The
study hypothesis was that each image stored in the knowledge database of CB-CAD system
has different importance in the diagnostic process. A new decision index was proposed that
incorporates different importance weights for each stored example. Then, a genetic algorithm
approach was employed to find an optimal set of weights according to clinically relevant
objectives. It was shown experimentally that the modified CAD system performs significantly
better as evaluated by the area under the ROC curve and partial area under the ROC curve
indices. As a result, the optimized CAD system is characterized by a higher mass detection
rate for a given specificity as well as a reduced false positive rate for a given sensitivity.

The technique presented in this paper has some similarities to the importance evaluation
based on the order of retrieval (Tourassi et al 2003). A significant difference, however, must be
stressed. In the approach based on the order of retrieval, the importance weights of patterns in
the database are query dependent, while in the approach presented here they are universal for
all incoming queries. Since in the presented approach the vector of importance weights is not
query dependent, the technique could also serve as the foundation for selecting which cases
should be stored in the knowledge database and which could be eliminated. Experiments are
underway to confirm the potential as a technique of selecting patterns for building knowledge
databases.

It should be noted that there is one limitation to the proposed optimization technique.
Each time the knowledge database is modified (e.g. by adding new examples), the same
optimizations process needs to be repeated. The optimization process, however, is run offline
and does not affect the response time of the constructed system.

Although the proposed GA approach was demonstrated with respect to CAD system for
a breast cancer detection, it is certainly applicable to any type of case-based CAD system
(feature-based and featureless). As CB-CAD systems become more popular for clinical
applications, sophisticated techniques are expected to emerge for more effective construction
and use of knowledge databases. The proposed technique is a step in this direction.
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