A Survey on Artificial Intelligence Based Modeling Techniques for High Speed Milling Processes

Amin J. Torabi, Meng Joo Er, Senior Member, IEEE, Xiang Li, Beng Siong Lim, Lianyin Zhai, Richard J. Oentaryo, Gan Oon Peen, Jacek M. Zurada, Fellow, IEEE

Manuscript Received Date: 4/27/2011

Abstract—The process of high speed milling (HSM) is regarded as one of the most sophisticated and complicated manufacturing operations. In the past four decades, many investigations have been conducted on this process aiming to better understand its nature and improve the surface quality of the products as well as extending tool life. To achieve these goals, it is necessary to form a general descriptive reference model of the milling process using experimental data, thermo-mechanical analysis, statistical or artificial-intelligent (AI) models. Besides, increasing demands for more efficient milling processes, qualified surface finishing, and modeling techniques have propelled the development of more effective modeling methods and approaches. In this paper, an extensive literature survey of the state-of-the-art modeling techniques of milling processes will be carried out, more specifically of recent advances and applications of AI-based modeling techniques. The comparative study of the available methods as well as the suitability of each method for corresponding types of experiments will be presented. In addition, the weaknesses of each method as well as open research challenges will be presented. Therefore, a comprehensive comparison of recent developments in the field will be a guideline for choosing the most suitable modeling technique for this process regarding its goals, conditions, and specifications.

Index Terms—Artificial Intelligence, Milling Process, Modeling Techniques, High Speed Machining

I. INTRODUCTION

Today, high speed machining (HSM) is widely applied to fulfill the overwhelming and increasing demands for producing vital pieces for various industrial sectors, specially in aerospace industries. The throughput of the machining process is a critical parameter for determining the quality of a production process. Large throughput as well as the surface quality of the product are directly related to the change in the total production rate and the overall gain. Early research in this area started in the late 70s and early 80s [1]. Afterwards, many approaches have been proposed for the production process to improve performance and achieve the desired quality and final mass production.

A literature survey of the most popular information extraction and modeling techniques in this area is beneficial for clarifying the research issues and illustrating their weaknesses and achievements. The main goal of this paper is to consolidate the available knowledge on modeling techniques of milling processes. It facilitates the extraction of the inherent relationship between all the effective cutting parameters, sensor signals, and process results by choosing the most appropriate modeling technique [2, 3, 4, 5, 6]. As a result, it will be easier to choose the proper approach to a descriptive reference model.

There are numerous modeling methods to provide a reference model for milling processes. The classical methods in this field as well as experiment set-ups and feature extraction methods were covered in our last paper [3]. Many of the state-of-the-art methodologies will be covered in the present paper. These methods are distinguished by their applied feature extraction and data preprocessing approaches. Other important factor for grouping modeling methods is the algorithm which they use. Probabilistic modeling methods such as Bayesian networks (BNs) and hidden Markov models (HMM) will be summarized in Sections II-A and II-D. They apply prob-
ability rules and relations to form a model for milling process monitoring and prediction. However, these methods are not as common as the methods based on neural networks, fuzzy logic, and their combinations, that are covered in Section II-B. Evolutionary approaches, such as genetic algorithms (GA) and particle swarm optimization (PSO), are also applied in this field. As Section II-C presents, they are mostly used in combination with other methods for optimization purposes.

Different types of clustering methods and algorithms are also applied to the signal features as the first layer for signal interpretation. Categorization and grouping of distinct signal features and associating them with different cutting phenomena are also the goals of the researches summarized in Section II-E.

Finally, in Section III, discussions of available techniques and research issues and some suggestions for future studies will be presented. Conclusions will be drawn in Section IV.

II. ARTIFICIAL-INTELLIGENCE BASED ANALYSIS OF HIGH SPEED MILLING PROCESSES

To provide an acceptable infrastructure for representing a general descriptive model we have to note that milling processes have a nonlinear time-varying multivariable nature and the sensor signals and signal features are applied to represent roughly the state of the process. The following subsections present the most commonly used AI techniques.

A. Bayesian networks

1) Methodologies and applications: A Bayesian network (BN) is a probabilistic graphical model which represents a set of random variables and their probabilistic dependencies. It is one of the most famous decision making methods based on the statistical behaviour of the process [8, 12, 36, 37, 38]. A Bayesian network was used in [9] to present the surface finishing results of a milling process. Naïve and tree augmented naïve (TAN) classifiers were used as the learning paradigm. After validation and comparing the confusion matrices, it was shown that in many cases TAN-trained Bayesian networks are superior to Naïve-trained BN [9]. Another similar report applies both Naïve and TAN and compare their performance with artificial neural network (ANN). Since the complex structure of ANN is not opaque comprehensive, [10] suggests a Bayesian network over ANN. It proposes a model for the surface roughness prediction where the correlations between the variables are clearly visualized.

Combined with support vector regression (SVR), BN was applied in [12] to detect tool wear and its performance is compared to another BN-Multi Layer Perceptron (BN-MLP) combination. Force features are used as the inputs to the both networks and they were compared in terms of their prediction accuracy. It is shown that the former model is more accurate [12]. Also in [8], a Bayesian network was used for studying acoustic emission and spindle power metrics. Face milling and drilling processes were investigated and the applicability

<table>
<thead>
<tr>
<th>Papers</th>
<th>Material</th>
<th>Condition</th>
<th>Cutting Conditions</th>
<th>Tool</th>
<th>Signals</th>
<th>Analysis Target</th>
<th>Preprocessing Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>[8]</td>
<td>AISI 4140</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>AE, spindle power</td>
<td>Tool wear, WH</td>
<td>Feature extraction</td>
</tr>
<tr>
<td>[9]</td>
<td>F114 steel</td>
<td>NM</td>
<td>Vc, Fc, Dc, Fz, Flutes Td*</td>
<td>Kondia HS1000</td>
<td>Kondia HS1000</td>
<td>Force</td>
<td>TAN* algorithm</td>
</tr>
<tr>
<td>[10]</td>
<td>Aluminium</td>
<td>NM</td>
<td>Cutting conditions, Geometry</td>
<td>Spender VC 560</td>
<td>Makino CNC</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>[11]</td>
<td>Steel St 52-3</td>
<td>NM</td>
<td>Dc, Vc, Fc</td>
<td>Vc, Fc, Vc, Vc</td>
<td>Spender VC 3200</td>
<td>NA</td>
<td>TAN* algorithm</td>
</tr>
<tr>
<td>[12]</td>
<td>ASSAB718HH</td>
<td>NM</td>
<td>NA</td>
<td>Spender VC 560</td>
<td>Makino CNC</td>
<td>Force</td>
<td>Tool wear</td>
</tr>
<tr>
<td>[13]</td>
<td>Inconel 718</td>
<td>Dry</td>
<td>Vc, Dc, Vc</td>
<td>Ruder HSM</td>
<td>Ruder HSM</td>
<td>Vibration, Force, AE</td>
<td>Tool wear</td>
</tr>
<tr>
<td>[14]</td>
<td>Steel St 52-3</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>Vibration</td>
<td>Continuous wavelet transform</td>
</tr>
<tr>
<td>[15]</td>
<td>Steel St 52-3</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>Vibration</td>
<td>Failure detection</td>
</tr>
<tr>
<td>[16]</td>
<td>Steel St 52-3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Vibration</td>
<td>Spectral feature extraction</td>
</tr>
<tr>
<td>[17]</td>
<td>ASSAB4340</td>
<td>Water-soluble</td>
<td>Dc, Vc, Fc</td>
<td>MAZAK H800</td>
<td>MAZAK H800</td>
<td>Vibration, AE</td>
<td>Tool wear</td>
</tr>
</tbody>
</table>

* See the Abbreviation Appendix
TABLE II. Artificial Neural Networks and Support Vector Machine Modeling Approaches to Machining Processes

<table>
<thead>
<tr>
<th>Papers</th>
<th>Material</th>
<th>Condition</th>
<th>Cutting conditions</th>
<th>Centre</th>
<th>Signals</th>
<th>Analysis target</th>
<th>Preprocessing technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>[18]</td>
<td>Titanium</td>
<td>NM</td>
<td>Vc Fc Dc*</td>
<td>NM</td>
<td>NA</td>
<td>Rg*</td>
<td>NA</td>
</tr>
<tr>
<td>[19]</td>
<td>Stainless steel 304L</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Surface profile</td>
<td>NA</td>
</tr>
<tr>
<td>[20]</td>
<td>Steel</td>
<td>NM</td>
<td>Dc Vc Fc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>PSO*</td>
</tr>
<tr>
<td>[21]</td>
<td>Aluminium</td>
<td>NM</td>
<td>Cutting conditions, Geometry</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>DFT*</td>
</tr>
<tr>
<td>[22]</td>
<td>Aluminium</td>
<td>NM</td>
<td>Vc Cu Fc Dc Td</td>
<td>HS-1000</td>
<td>ALF*, Force, Vibration</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>[23]</td>
<td>Steel</td>
<td>NM</td>
<td>Vc Cu Fc Dc Td</td>
<td>HS-1000</td>
<td>ALF, Force, Vibration</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>[24]</td>
<td>Titanium</td>
<td>NM</td>
<td>Vc Cu Fc Dc Td</td>
<td>HS-1000</td>
<td>ALF, Force, Vibration</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>[25]</td>
<td>AISI 1030 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Force</td>
<td>Tool life</td>
</tr>
<tr>
<td>[26]</td>
<td>Kistler 5257A</td>
<td>NM</td>
<td>Vc Fc Dc Td</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>Tool life</td>
</tr>
<tr>
<td>[27]</td>
<td>Stainless steel 304L</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
<tr>
<td>[28]</td>
<td>AISI 1030 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
<tr>
<td>[29]</td>
<td>AISI 1040 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
<tr>
<td>[30]</td>
<td>AISI 1040 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
<tr>
<td>[31]</td>
<td>AISI 1040 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
<tr>
<td>[32]</td>
<td>AISI 1040 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
<tr>
<td>[33]</td>
<td>AISI 1040 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
<tr>
<td>[34]</td>
<td>AISI 1040 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
<tr>
<td>[35]</td>
<td>AISI 1040 steel</td>
<td>Dry</td>
<td>Vc Fc Dc</td>
<td>NM</td>
<td>NA</td>
<td>Tool life</td>
<td>NM</td>
</tr>
</tbody>
</table>

Support of BN to the prediction of their surface finishing results was compared. As a result, the root causes of many changes in the signal during the process were correlated to the available cutting conditions.

2) Pros and cons: Table I consolidates the recent researches applying Bayesian networks for high speed milling processes. Bayesian networks have been extensively used in the best cutting condition determination problem. Using proper signal features as inputs, there are many applications where BN is used for modeling. Compared to other AI techniques, statistical models need more data for training to achieve the same level of accuracy which is considered a negative aspect. However, since it is graphically representable, using a transition probability matrix makes all the significant and insignificant parameters in the process easily recognizable for the researcher.

B. Fuzzy logic, neural and fuzzy-neural networks-based methods

1) Methodologies and applications: Artificial neural networks, fuzzy logic, and their combinations such as fuzzy-nets (FN), are widely used in modeling HSM processes. They have also been shown to be capable of modeling not only end-milling but also other kinds of machining processes, providing an accurate approximation of the surface finishing [39, 40, 41, 42, 43, 44, 45]. Each report applies ANN with a different algorithm. However, choosing the best structure is still an open problem. In order to model the machining process, feed forward back propagation (FFBP) algorithm has been used extensively in many articles. The details of the structure and connections between inputs/outputs, e.g., the number of hidden layers and their neurons, are also considered as an important issue. Some discussions on the optimum modeling structure can be found in [18, 21, 22].

In [31], tool wear and surface roughness is correlated with cutting conditions and force features using a BPNN structure. However, since there are many choices for ANN modeling, there is still an issue in choosing the best method and structure. For example, [25, 26, 27] compared the Radial Basis Functions (RBF), back-propagation methods and dynamic models, to find the best structure. Using only one hidden layer and proper DoE, a model was presented that had the ability to capture the characteristics of the force signal given the cutting conditions. Then [26] obtained an approximation to the surface profile while [25] showed that RBF is superior in the sense of a presented cost function, in the prediction of force features.

Given the fact that the wavelet coefficients of the force
signal carry different patterns in normal and a broken tool, an ART2-type self-learning neural network was designed to detect signs of tool failure from the force signal [23].

In addition to the cutting conditions and vibration signal, to predict the output surface profile, the fractal geometry and self-similarity properties of the surface were used as a reference building block for all surface patterns and for determining fractal parameters in [24].

Over-fitting and slow-learning are also important challenges in applying ANN models. The support vector machine (SVM) method has been developed to overcome such issues by minimizing the generalization error as well as by maximizing the separation margin rather than training error.

As described in [46], there are comparatively few parameters to be set in SVM methods. With its benefits, SVM and support vector regression has been used for force, power, and spindle displacement signals, to classify broken tools [11, 32, 33, 34, 35].

Fuzzy Logic (FL) based tool wear monitoring was suggested in [47]. To predict flank wear, it utilizes the maximum cutting force with other cutting conditions. Forming its rule base according to experimental and expert knowledge, it is able to estimate the existing flank wear. In [48], a fuzzy-logic based controller was applied on feed current signal to increase the metal removal rate (and lessen production time) while maintaining a constant cutting force.

Fuzzy neural network (FNN) can also be applied to many machining processes as a condition monitoring system [49]. For example, the Hybrid Taguchi Genetic-Learning Algorithm (HTGLA) was used in [40] to fit a nonlinear model to the R_n values of a best cutting condition determination experiment. The learning data is identical to that used in [50]. The aim is to compare the results of different choices for membership functions which are used in the Adaptive Neuro-Fuzzy Inference System (ANFIS). As a complete example of a combined monitoring and control system, Fuzzy-Neuro Adaptive Surface Roughness Control (FN-ASRC) was applied in [39], where FN-ASRC is divided into two distinct parts. One is the Fuzzy-Neuro In-Process Surface Roughness Recognition (FN-IPSRR), which predicts the surface roughness, and the other sub-system is FN adaptive feed-rate control (FN-AFRC), which suggests appropriate modifications to the cutting conditions in order to achieve a determined surface roughness set point. Fig.2 illustrates the framework of the FN-AFRC method introduced [39].

In order to develop the whole monitoring and control system, two distinct five-layer fuzzy-nets were used. The layers are the input, feature-extraction, relations, combination, and defuzzification layers. The fuzzy rules for identification and control are defined and conflicting rules are moved out of the rule base. The process is stopped half-way for the FN-IPSRR system to predict the surface roughness for the rest of the path. Then, in order to improve surface roughness, a feed rate modification is suggested by FN-ASRC based on the predicted results of the FN-IPSRR [39].

Fuzzy-Nets has also been applied to model the milling process [42, 51, 52]. In this method, a number of membership functions are assigned to the input space and are fine-tuned in order to obtain the most accurate input/output model. Then, combinations of these membership functions are considered as possible associative rules in the model’s rule base. After all, only the rules with more occurrences and no conflicts will remain. For performance verification, several designs have been tested and the Fuzzy-Nets method performs acceptably in its surface roughness predictions. The above-discussed papers are summarized in Tables II and IV.

2) Pros and cons: This section has mentioned methods that have been applied due to their ability to model nonlinear processes which are applicable to experiments to determine the best cutting conditions as well as destructive tests. Since the literature has been established on these techniques, there have been plenty of different implementations of these methods concerning prediction and control of milling processes. There are also reports that claim the repeatability of the models. However, none have claimed to be a universal reference model for milling processes and there is no consistency with regard to their requirements for inputs and outputs which opens the doors for more investigations. Also, many types of models have yet to be developed and tested, such as the combination of neuro-fuzzy algorithms with other AI methods and dynamic fuzzy models [53] for off-line and on-line monitoring systems, yet, the capabilities of these models to capture the nonlinear time varying nature of the process is an advantage of such methods and their inflexible and complex structure is a disadvantage. In addition, there are very few on-line prediction and control researches available in this field, which leaves space for more investigations on universal on-line models.

C. Evolutionary algorithms, genetic algorithms, genetic programming and particle swarm optimization

1) Methodologies and applications: The method of genetic algorithms (GA) is an optimization method based on evolutionary searching of the solution space. The idea was based on the works introduced in [62]. GA
is used in the machining technology field for modeling issues wherever optimization is concerned. In [58] and [59] for example, it was used for best cutting condition determination. With proper economic justifications for the cost of the process and modified limitations on the variables, many cost functions are defined for the process with some cutting conditions as optimization variables [58, 59]. The same problem is solved with a combination of simulated annealing (SA) and GA in [57]. However, since GA training requires random measurements on surface roughness and tool wear, it is not easy to be generalized in the available form or to be used for online analysis and prediction.

The genetic programming (GP) method was first introduced in the early 90s by Koza [63]. Basically, it is an evolutionary algorithm that makes the program perform better in evolving and producing an optimal model that matches the data. Theoretically, they are represented in the form of recursively evaluated and evolved tree structures. Every tree node has an operator function and every terminal node has an operand, making mathematical expressions easy to evolve. There are several implementations of this method for milling process modeling [54, 55, 64]. A general review of these methods can be found in [64]. The method was used in [54] and [56] to represent the surface roughness in its dependence on the cutting conditions and the vibration signal. According to this method, an evolutionary algorithm investigate the best match for the experimental data by evolving the tree of operators and operands as modeling functions for the milling process using simple function genes and terminal genes. In [60], a GA-optimized neural network (GONN) was applied to tool condition monitoring where GA was applied to fine-tune the neural network parameters. The performance of this model was also compared with that of particle swarm optimization (PSO)-based neural network (PSONN). In both the GA and PSO based approaches, these optimization methods are applied for determining the neural network parameters.

The PSO method is a famous optimization procedure based on a direct search method which imitates social behaviour in the presence of objectives. It was firstly introduced by Kennedy and Eberhart [65] and was used in several applications. It uses an iterative formula for the swarms to approach global maxima,

\[
v_{i,j} = c_0v_{i,j} + c_1r_1(\text{globalbest}_i - x_{i,j}) + c_2r_2(\text{localbest}_i - x_{i,j}) + c_3r_3(\text{neighbourhoodbest}_i - x_{i,j})
\]

Due to its ability to search for the global optimum, \textit{globalbest}, proportional to local optimum, \textit{localbest}, and nearest optimum, \textit{neighbourhoodbest}, it has been mostly applied in milling processes to optimize the cutting conditions. PSO was used for the first time in the machining literature where to find the best matching parameters for a proposed surface roughness model [61].

\[
R_a = \frac{10aD_c^b F_c^c}{V_c^d}
\]

where \(R_a\) is the surface roughness, \(D_c\) is the radial depth of cut, \(F_c\) represents the feed factor, \(V_c\) is the spindle speed, and \(a, b, c, d\) are unknown parameters.

In [32, 61], particle swarm optimization was applied to the results of a support vector machine (SVM). The SVM determines the unknown parameters of the model in (2). Then, PSO was used to find the optimal cutting conditions [32].

Because of its ability to find the optimal solution for most nonlinear objective functions, there is no specific limitation on using any predefined model for the process. For example, [66] uses an artificial neural network (ANN) model for the force versus surface roughness and a PSO algorithm was applied to find the optimum cutting conditions. In [20], an ANN was applied to model the tool life dependent on the cutting conditions and flank wear. PSO is also utilized to optimize the ANN parameters.
2) Pros and cons: Table III presents the papers on these methods. Since genetic algorithms were not developed for dynamic training until recently, they were just used for off-line best cutting condition determination. Since the basic idea is to reach an optimum point for an objective function, it can be properly used for building a best fitting model on off-line raw data. However, there is no report that this method is capable of on-line adaptation. There are some studies that suggest merging dynamic learning with this method, [67], and so it might be applied in the future studies. Another issue that exists with GP is the complex formulations and functions in the output. To make the modeling more meaningful, the output model have to reflect the mechanical nature of the process. This makes the model process more computationally intensive.

As an optimization method similar to genetic algorithms, PSO is also used to facilitate nonlinear model identification and parameter determination. Also, it can be used as a training method for other AI techniques to find the best fitting model for the milling process. Since it requires an existing nonlinear function, it might not be suitable for on-line data analysis and prediction. Perhaps with some modifications in the variable definitions, it might be able to work in real time as well as GA.

D. Hidden Markov models

1) Methodologies and applications: Hidden Markov models (HMMs) were first introduced in [68] as ‘probabilistic functions of Markov chains’. Afterwards, several methods were introduced for modeling and their application was summarized in [69]. To formulate an HMM model \(\lambda = (\pi, A, B) \), usually \(N \) distinct (hidden) states \(q_t \) for the system are considered. The Markov chain is defined by the connecting transitions between \(q_t \) states. These connections are completely defined by the state transition matrix \(A = [a_{ij}] \) where each element \(a_{ij} \) represents the probability of the corresponding transition.

\[
 a_{ij} = P(q_t = j | q_{t-1} = i), 1 \leq i, j \leq N \tag{3}
\]

Since the \(a_{ij} \)s are probability values, the following axiomatic constraints are applied [70]:

\[
 a_{ij} \geq 0, \sum_{j=1}^{N} a_{ij} = 1, \forall i. \tag{4}
\]

We may assume without loss of generality that the start time of the model is 0, at which point the model will have an initial condition. It is represented by the probability of each individual state at the initial time or the initial condition probability distribution, \(\pi_i = P(q_0 = i) \) which is the \(i^{th} \) element of \(\pi \). Then, the probability of any chain of states will be

\[
 P(q|A, \pi) = \pi q_0 a_{q_0 q_1} \cdots a_{q_{T-1} q_T}. \tag{5}
\]

Since the states of the system are not always observable, the only thing that is available about the system is the observations \(O_t \) which is according to the changes in the system states. The relation between these observations and the states is declared by another probability matrix which is called the emission matrix,

\[
 B = \{b_i(O_t)\}_{i=1}^{N}, b_i(O_t) = P(O_t|q_t = i). \tag{6}
\]

There are three major issues to be faced for developing an HMM structure to model a system. The first one is to compute the probability of an output event’s happening in the available model \(\lambda \) (Evaluation). The second issue is to find the unknown parameters of the HMM model which best matches the observations \(O \) (Estimation). The last problem is to find out the most probable sequence of states \(q_t \), regarding the observations \(O \) (Decoding). Further details of the available solutions to these three problems and many other applications of HMM are discussed in [17, 69, 71].

HMM has rarely been used in the literature to present a dynamical model of a process. Each paper has its own way to provide sequential data to HMM training algorithms such as Baum–Welch, known also as EM (the expectation maximization) method. It is a maximum-likelihood based method that finds the parameters of the state transition matrix and the output emission matrix from the internal states [15, 70]. Originally, it seemed that HMM is not as accurate as other models for a nonlinear system. However, its aggregation with classification and nonlinear methods can lead to better results [16].

To provide data for training an HMM model for a milling process, some papers applied the vector quantization (VQ) method based on the discrete wavelet decomposition of sensor signals which is briefly described in [3]. Applying the codebook of the worn or sharp tool, its status is predicted by applying the current state and emission matrix. There are classification methods other than VQ that have been used to generate the input/output sequence for an HMM to model. For example, [17] suggests a modified classifier for HMM training the status of the tool in probabilistic terms rather than in binary output, for example Worn/Sharp states.

HMM was also used to correlate the observable changes in the energy content of different CWT scales of vibration signals with tool wear. Vibration signals are analysed for some of their details and for each detail the changes in the energy are observed for a certain
period of time [13]. After proper training, two distinct codebooks for sharp/worn tool are developed. Simulations show that HMM models can successfully monitor and detect the internal status of a milling tool. Wavelet modulus maxima information was used in [14] to build a combined HMM model. It was shown that this feature has meaningful changes according to tool wear progress and it was applied to provide an accurate representation of machining condition. Therefore, three models for different states of the tool, i.e., normal, warning, and failure condition, were presented. The probability of each sequence of the data was estimated according to these models and the sensor signals and finally the highest probability is chosen as the real state of the system.

2) Pros and cons: HMM has only been applied in a few studies in the literature, Table I. Compared to BN, it has the benefit of being able to reflect the behaviour of milling processes in the form of dynamic models rather than static models. It facilitates an estimation of the internal states of the system, needing only system outputs. As an essential issue, finding the probability distribution structure that fully describes the sequence of the signal features has been investigated in many researches. However, since it requires a large amount of data for training, it seems less appropriate for modeling of best cutting condition determination experiments. For destructive tests however, it might be used the same way that it is used in speech processing and recognition [70, 77, 78], because of the availability of AE sensors [13, 16]. However, among the reports on the performance of HMM in milling processes, there are very few predictive accuracy comparisons with other AI techniques in the field.

E. Clustering and classification methods

1) Methodology and applications: Clustering methods are meant to keep similar data together in clusters to facilitate a proper overview of the domain. There are two types of clustering which are commonly applied in milling processes: hard/crisp clustering and fuzzy clustering. In the former, a datum can only belong to one cluster, but in fuzzy clustering methods, a datum can be a member of several clusters with a certain membership value. The process of assigning a datum to a cluster or some clusters depends on its distance, similarity, or connectivity to other data in that specific cluster [83, 84].

Fuzzy C-means clustering is a famous clustering techniques [85]. It classifies the finite information into several classes based on some criteria. Given a finite set of data, the algorithm returns a list of cluster centres and a partition matrix. Each of its elements is a membership value of a datum that belongs to a specific cluster [85].

On the other hand, each datum is assigned to only one cluster in hard/crisp clustering, as in the k-means algorithm, where a datum is attributed to the cluster with the nearest centre. The centre of each cluster is the arithmetic mean of all its members. Crisp clustering, such as k-means and k-medoids, are applied in [86] to illustrate the applicability of such methods to modeling approaches.

The fuzzy C-means clustering method was used in [79] on wavelet packet features of AE sensor signals and in [81, 86] on the energy contents of different scales of CWT of the force and vibration signals. Power consumption and vertical force are also clustered in [80]. Since the RMS value of each frequency band in an AE signal changes with different tool conditions [82], this signal feature is indicative of tool wear and surface roughness. As reported in [79], four states for the tool wear with seven features each, compose the codebook of the clustering method. Fuzzy clustering on continuous and discrete wavelet analysis of AC servo-motor current signals of the spindle and feeder was used in [73] for tool breakage detection and tool wear monitoring.

Classification methods have also been applied for milling condition detection purposes. From the experimental knowledge [87] supposes five different classes for feature patterns of sensor signals, applying this knowledge with linear discrimination classification techniques.

Self organizing maps (SOM) can be considered as another clustering technique to reduce the dimensionality of the data. The new dimension depends on how the new sets of vectors are ordered. For example, for 2D-SOM, the code vectors are ordered in 2D and referred to by a code vector index. To train the SOM, each training sample of the high dimensional space is mapped to its nearest code vector member, and hence belongs to the corresponding class. Then the code vector is updated by moving toward the training vector. So, in the learning procedure, all code vectors move towards the training vector depending on the iteration number and distance from the vector under which the last training vector was classified. SOM was used in [16] to reduce the dimension of the feature space of the time frequency blueprint of time windowed signals. It was also applied as a part of the rule generation procedure in [82] in combination with a dynamic fuzzy regression modeling system.

2) Pros and cons: The clustering of the available data of the process will lead to the generalization of the model as the clusters are easier to associate with tool status than were the pure signals. This issue mostly appears when there are different cutters involved. In addition, there are many uninvestigated and unclassified features to be studied, which leaves space for more research.
Among them, time–frequency analysis features can be mentioned. These features can be applied in a more methodical way when clustering methods are involved. Besides, there are quite number of classification methods that have not been applied to the field of intelligent machining. Also, the combination of clustering methods with AI techniques remain to be investigated more extensively in the field so that the contribution of clustering methods be clarified. Clustering methods can also be used to investigate the similarities between different signal features. Finding these similarities, other AI techniques can be applied to map different classes to the different respective conditions of the tool and milling process. However, the number of classes and the structure of the classification method may determine its accuracy and they are open issues for further investigations.

III. DISCUSSION

The survey presented in the previous sections shows that there is lack of good ideas in modeling milling processes. However, there are some open issues that need to be addressed in future investigations. One of these issues is that the predictions resulting from these approaches must be accurate and repeatable. It has been shown experimentally and mathematically that AI-based methods are more accurate than other classical methods. It is also clear that each one of these state of the art modeling, inference, and decision-making methods is able to predict surface roughness and tool wear in a non-intrusive manner. As such, any theoretical development in one of these methods results in a more informative, accurate, and repeatable reference model. However, from the industrial point of view, any approach developed must be easy to implement. The learning speed and simplicity of the model structure dealing with changes in the system are the challenges for future. One of the beneficial characteristics that a future research in this field has to address is an insightful comparison between methods. The majority of the available papers concern only one method and its capabilities of dealing with the process. Referring to the different sections of the present paper, it is obvious that although many AI techniques have been utilized for tool wear detection or modeling surface roughness, there are many methods yet to be investigated. For example, not all of these AI techniques have been studied as to finding the most appropriate configuration, algorithm, and structure. Many of the proposed methods have yet to be tuned in some of their parameters and they vary from one experiment design to another. Besides, there are no dynamic and intelligent methods in the field that can be applied without unnecessary initializations. Other methods, such as Bayesian networks [8, 9] and Petri nets [41], have been applied to tool status and surface finishing predictions. However, the justification of event-based models needs more study and many advanced and intelligent event-based models such as [88] have not yet been investigated in this field.

To summarize the discussion, there are some obvious research gaps in the field that need to be addressed:

1) One challenging area is to take better and more descriptive features out of the collected signals using more suitable signal processing schemes and feature selection methods.

2) Unavoidable frequency drift of the signals and changes in their shape during their lifetime due to mechanical parameter imperfections have not been extensively investigated. These frequency drifts are different from those due to tool aging.

3) Changes in machine dynamics during long term running, which can lead to undesirable inaccuracy of reference system model, are another issue to be focused on in monitoring systems.

4) Lack of proper investigation of the data pre-

TABLE IV. Fuzzy Neural Network Modeling Approaches to Machining Process

<table>
<thead>
<tr>
<th>Papers</th>
<th>Material</th>
<th>Condition</th>
<th>Cutting conditions</th>
<th>Center</th>
<th>Signals</th>
<th>Analysis target</th>
<th>Preprocessing technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>[40]</td>
<td>NM</td>
<td>NM</td>
<td>Vc, Fc, Fc</td>
<td>NA</td>
<td>NA</td>
<td>Ra</td>
<td>NA</td>
</tr>
<tr>
<td>[42]</td>
<td>6061-T8511</td>
<td>Aluminium</td>
<td>Dry, Vc, Fc, Fc, Td</td>
<td>Storm CNC A50</td>
<td>Force, vibration, AE</td>
<td>Ra</td>
<td>Fuzzification</td>
</tr>
<tr>
<td>[44]</td>
<td>Aluminium</td>
<td>NM</td>
<td>Vc, Fc, Fc, Fc</td>
<td>Beaver CNC</td>
<td>AE, Force, spindle acceleration</td>
<td>TCM</td>
<td>Wavelet analysis</td>
</tr>
<tr>
<td>[46]</td>
<td>6061 Aluminium</td>
<td>NM</td>
<td>Vc, Fc, Fc</td>
<td>Makino-FNC74-A20</td>
<td>Feed current, Spindle current</td>
<td>TCM</td>
<td>Wavelet analysis</td>
</tr>
<tr>
<td>[48]</td>
<td>Steel AISI-1018</td>
<td>NM</td>
<td>Dry, Vc, Fc, Fc, Td</td>
<td>ACE-V30</td>
<td>Spindle and feed current</td>
<td>TCM</td>
<td>Wavelet analysis</td>
</tr>
<tr>
<td>[47]</td>
<td>Inconel 718</td>
<td>semi-dry</td>
<td>Vc, Fc, Fc</td>
<td>Fadal VMC-40</td>
<td>Vibration, Proximity</td>
<td>TCM</td>
<td>Wavelet analysis</td>
</tr>
<tr>
<td>[49]</td>
<td>Steel</td>
<td>NM</td>
<td>Vc, Fc, Fc, Fc</td>
<td>Fadal</td>
<td>Force</td>
<td>Tool wear</td>
<td>Force</td>
</tr>
<tr>
<td>[50]</td>
<td>NM</td>
<td>NA</td>
<td>Vc, Fc</td>
<td>Fadal</td>
<td>Vibration, force, acoustic</td>
<td>Tool wear</td>
<td>Actual value</td>
</tr>
<tr>
<td>[51]</td>
<td>Aluminium</td>
<td>NM</td>
<td>Vc, Fc</td>
<td>Fadal</td>
<td>Vibration, Proximity</td>
<td>Tool wear</td>
<td>Actual value</td>
</tr>
<tr>
<td>[52]</td>
<td>6061 Aluminium</td>
<td>NM</td>
<td>Vc, Fc</td>
<td>Fadal</td>
<td>Vibration, Proximity</td>
<td>Tool wear</td>
<td>Actual value</td>
</tr>
<tr>
<td>[54]</td>
<td>Inconel 718</td>
<td>semi-dry</td>
<td>NA</td>
<td>Fadal</td>
<td>Vibration, Proximity</td>
<td>Tool wear</td>
<td>Actual value</td>
</tr>
<tr>
<td>[56]</td>
<td>Steel AISI-1018</td>
<td>NM</td>
<td>Dry, Fc</td>
<td>Fadal</td>
<td>Vibration, force, acoustic</td>
<td>Tool wear</td>
<td>Actual value</td>
</tr>
<tr>
<td>[57]</td>
<td>Aluminium</td>
<td>NM</td>
<td>Geometry Vc, Fc, Fc</td>
<td>Fadal</td>
<td>Vibration, Proximity</td>
<td>Tool wear</td>
<td>Actual value</td>
</tr>
</tbody>
</table>

* See the Abbreviation Appendix
processing methods is also obvious in the field of machining. For example, wavelet analysis and other state of the art pattern decomposition and extraction methods have only just recently been utilized for milling process signals, but they seem to be appropriate approaches for the extraction of the different properties of the signal.

5) There are not many reports on the interpolation of the results from one type of cutter to another. Therefore, no matter how the cutters differ in their diameter or edge-preparation methods, for every new cutter the modeling must be repeated, which is expensive and time-consuming.

6) The effect of some production parameters of the cutters, such as edge-preparation methods, grinding quality, initial surface roughness on the cutting edge, the geometrical cutting-edge design angles, and various coatings have not yet been investigated.

7) There is apparent lack of investigation of the use of clustering, classification, and grouping methods in this field. One possible reason is the direct use of cutting conditions and signal features instead of clustering data in AI-based models.

8) In the literature, there are very few papers that pay attention to the changes in the shape of the signal due to tool degradation, aging, or tool wear. These methods do not quantitatively investigate such changes. Mostly, they are limited to the use of frequency and time domain features and not the cross-correlation of the shape of the signals with corresponding tool edge phenomena.

9) There are many AI techniques that have not been used in the field of modeling of machining processes. As an example, syntactic classification and modeling
can be considered. This is a knowledge-based pattern recognition method. To model a sophisticated pattern, it provides more simple patterns, called \textit{primitives}, which are composed to make that complex one. Therefore a hierarchical model is presented for any similar pattern or simply any major pattern is decomposed to appropriate primitives as its building blocks [89]. It has been used in some articles to find the pre-specified shapes in the signals [90]. This method was extensively used in speech processing [91] and can be used for fault diagnostic and automatic failure sign distillation for tool condition detection. Another example could be the extreme learning method [92]. This method has proved to be applicable in on-line sequential learning. Similarly, other similar state of the art techniques that have not yet been used in the field can be applied.

10) In addition, many variable structure AI techniques, such as [53], have not been studied yet. They might replace the fixed structure of many of mentioned structures and facilitate the generalization of those methods. The fixed structures of the available methods prevent them from being easily generalized and from being used online.

11) Some papers provide a solution for one specific experimental design in such a way that the results cannot easily be generalized to other design issues and conditions. As a result, many experiments are needed for modeling a new experimental design. The ability of the models to remain descriptive and useful in different scenarios is a critical issue.

12) Monitoring and prediction cover only one part of the mission. The resulting reference models ought to be applied in forming model-based controllers to adjust the cutting parameters according to the demands of the end user.

13) The overall structures for generalizable monitoring and prediction system using the available modeling methods has not been considered in the field. This would seem to be a big gap needing to be covered in future studies. To cover this area, the entire structure of the monitoring system has to be investigated for the best techniques to be applied in each part and their interconnectivity and reasonable places in the structure.

An overview on the available techniques and their application in milling process modeling can be found in Table VI. It summarizes the works mentioned in this paper and presents their advantages and disadvantages. Advances in artificial intelligence, dynamic structure modeling techniques and clustering methods as well as data pre-processing schemes should be considered to affect the future of the investigations and provide better solutions for industry, such as better quality and more productivity.

IV. Conclusions

This paper investigated several commonly used methods for surface-finishing quality modeling of high speed milling processes. It covered many artificial intelligence methods as well as classical ones. The simpler methods are typically used for simple presentation of the behaviour of the process while AI-based methods are applied for modeling, on-line monitoring, and predictive control. Based on these two categories, we investigated the state-of-the-art methods which are commonly used for both modeling and control. Since the nature of the process is multi-variable and nonlinear, most of these modeling approaches are found to be able to model such systems. Bayesian networks, fuzzy Petri-nets, hidden Markov models, and dynamic fuzzy-neural networks have proved to be the most suitable modeling techniques. On the other hand, there are many research gaps that need to be addressed in this field. Besides, there are very few research reports on the tool-production methods; tool attributes; and their effects and correlations with the sensor signals, surface-roughness and tool-degradation. Also, there is an obvious research gap as to presenting a single general model for milling processes where the available models are not expandable to other cutters (even those with similar attributes). Before obtaining a general descriptive model for milling processes, the field keeps being updated by new ideas based on fresh AI techniques and different features of the sensor signals.

In this paper, many of the available modeling methods were discussed. Their benefits and disadvantages were presented and many research gaps in this field were identified. This survey paper will facilitate the selection of an appropriate modeling technique for different research purposes concerning milling processes. Also, some weaknesses from the research point of view in the field of machining technology were made clear.

Acknowledgment

Our project on modeling the HSM processes is supported by A\textsuperscript*Star, Singapore. The authors would like to thank Mr. Saeid Javidi and Dr. Sajjad Dehghani for their kind help and guidance. Thanks to the Singapore’s SIMTech staff for their contributions and sincere helps. Also special thanks to the anonymous reviewers of this paper whose suggestions helped much in the improvement of its quality.

Abbreviations and Acronyms

AISIAmerican Iron and Steel Institute
REFERENCES

[28] P. Palanisamy, I. Rajendran, and S. Shanmugasundaram. Prediction of...

Li Xiang received her Ph.D. degree from Nanyang Technological University, Singapore in 2000, as well as M.E. and B.E. degrees from Northeastern University, China, in 1987 and 1982, respectively. She has more than 15 years of experience in research and applications of data mining, artificial intelligence and statistical analysis, such as neural networks, fuzzy logic systems, data clustering and multiple regression modeling.

Beng Siong Lim joined SIMTech in 1987 following the development of an airborne flight simulator configuration and sales engineering system at Brightton University for Rediffusion Simulation at Crawley. He pursued his Ph.D. with a scholarship from the University of Nottingham in the application of computational intelligence for component design and tool engineering. His main interest includes the development of evolutionary computation for performance degradation and characterisation and reference modelling.

Lianyin Zhai has received his bachelor degree at Xi’an Jiaotong and his MEng and PhD at Nanyang Technological University. His research interests include Intelligent Systems.

Richard J. Oentaryo is currently a Research Fellow at the Living Analytics Research Centre, Singapore Management University (SMU). He received his Ph.D. and B.E. (First Class Honor) from the School of Computer Engineering, NTU, in 2011 and 2004, respectively. His research interests span neuro-inspired architectures.

Gan Oon Peen is a research scientist and group manager at the Singapore Institute of Manufacturing Technology and a technical lead at the National RFID Centre Singapore. He received his Ph.D from National University of Singapore in 1997. His research interests are in the area of intelligent factory control and prognostic health management, in particular, intelligent control, discrete event system modelling and control, data mining, operation research, and automation.

Professor Jaeck M. Zurada is IEEE fellow and Professor of Electrical and Computer Engineering at the University of Louisville, Louisville, Kentucky, USA. He served as Department Chair and is now a University Scholar. He has authored several textbooks and more than 360 publications in computational intelligence, image/signal processing, bioinformatics and microelectronic systems that have resulted in about 7100 citations.

Amin Torabi Jahromi was born in Jahrom, Iran in 1982 and received his B.Sc and M.Sc degrees in Control Engineering, Shiraz University, Iran, in 2004 and 2007, respectively. He is now with Nanyang Technological University of Singapore as a PhD student and also serves as a lecturer in Persian Gulf University of Buhehr, Iran. He worked on many practical projects and industrial challenges during his academic studies in Student Research Center of Shiraz University, "Radio Amatory Lab" and also SIMTech, Singapore. During his PhD studies, he worked with some authors of this paper as an award winning team that secured the IES Prestigious Publication Award 2011. His research interests include linear and nonlinear control theory and their applications and also application of intelligent systems, fuzzy logic and neural network based systems, clustering algorithms, data mining, and data analysis and application of artificial intelligence theory in telecommunication systems.

Professor Er Meng Joo is currently a Full Professor in Electrical and Electronic Engineering, Nanyang Technological University, Singapore. He has published 5 books, 16 book chapters and more than 400 refereed journal and conference papers in his research areas of interest. His areas of research interests are computational intelligence, robotics and automation, sensor networks, biomedical engineering and cognitive science. In recognition of his significant and impactful contributions to Singapore’s development by his research project entitled “Development of Intelligent Techniques for Modelling, Controlling and Optimizing Complex Manufacturing Systems,” Professor Er won the Institution of Engineers, Singapore (IES) Prestigious Engineering Achievement Award 2011. He is also the only dual winner in Singapore IES Prestigious Publication Award in Application (1996) and IES Prestigious Publication Award in Theory (2001). Currently, he serves as the Editor-in-Chief of the International Journal of Electrical and Electronic Engineering and Telecommunications, an Area Editor of International Journal of Intelligent Systems Science, an Associate Editor of eleven refereed international journals and an editorial board member of the EE Times.