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Abstract

Hopfield networks with fully connected standard neurons can be generalized by replacing
bi-level activation functions with their multilevel counterparts. Multilevel neuron characteristics
are discussed in the paper with emphasis on their inflection points. It is shown that an activation
function possessing (N + 1)-levels yields N + 1 minima and N saddle points of the computational
energy function when two generalized neurons are used in a conventional bi-stable connection.
Analytical results for parameter constraints and energy function properties are discussed for binary
and ternary characteristics of neurons. Gradient fields indicating basins of attraction for continu-
ous-time networks are used to illustrate dynamical relationships during network convergence to
stable points. Results indicate that generalized Hopfield networks can be used for multilevel signal
processing and smoothing of planar images.
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1. Introduction

Most neural networks are defined as consisting of ‘two-state’ neurons and evaluated
accordingly. Neurons’ activation functions in such networks are considered as having
sigmoidal (soft-limiting) or signum-type (hard-limiting) shape. Much more diversified
and still stable network behavior, however, can be observed when multilevel neuron
characteristics are used. While these networks, called here generalized Hopfield net-
works (GHN), preserve the global stability properties of original Hopfield networks,
they display a multiplicity of stable states. This paper outlines a formal framework of the
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GHN concept and discusses basic features of such networks. Both formal propositions
and illustrative discussions using the energy concept demonstrate substantial potential
for GHNs as multilevel image processors. In addition, such networks can be directly
applicable in multi-valued logic circuits.

2. Activation functions of a GHN neuron

Inspection of a continuous-time neuron activation function shown in Fig. 1(a)
indicates that the function possesses a single inflection point. The activation function is
of the standard form as in (1)

f(x)=2f(x) -1 (M
where f(x)=(1+¢ **)" "

Consider a set of 3 desired inflection points for the activation function of a multilevel
neuron. This yields the activation function for N = 2 of the following form

f(x,2)éfs(x—~;-)+fs(x+%)—1 (2)

with three potential inflection points equal to — 3, 0, and 3. Notably, all inflection
points only occur for A values large enough. It is shown below that for N =2 it is
required that A > 2 In(2 + V3).

For the discussion to follow refer to Fig. 2 showing f(x, 2) and its derivatives f', f”,
and f” at A=A, and A=3>A_,. When A is not large enough, equation f"(x, 2)
= 0 has only one root at the origin. Since f”(x, 2) = 0 changes sign at inflection points,
we require the existence of three solutions of f"(x,2)=0. In order to satisfy this
condition, four solutions of equation f”(x, 2) = 0 must exist, requiring also f"(0, 2) >
0. Using (2) we obtain

1 1
ro.2=r(3) (- 3) )
Since f"(3) =f"(— 3) we have
1
f/"(O’ 2) = Zf:" (5) (4)
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Fig. 1. GHN activation functions for: (@) N=1(b) N=2(c) N=3,and(d) N =5.
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Fig. 2. GHN activation functions for N =2 and their derivatives (@) A= A_,;,, (b) A=3> A,,;, as in (10).

Further, it can be shown that
Fr(x) = Xf(x) (1 = £(x)[6£2(x) — 6£,(x) +1] (5)

The critical value for A is therefore when the term in square brackets in (5) becomes
greater than zero for y £ f,(x)| «= 1 since all other terms in (5) are greater than zero
yielding

Hz)-r-220 (©)

2

Taking the smaller root (3 — V3 )/6 yields a negative value A < —2 In(2 + V3), which
is invalid, because it is assumed that A is positive. Plugging the larger of the two roots
of (6) equal to (3 + V3 )/6 into the inverse of the activation function f,(x)

| 1 1-y

x=£'(y) =~ 3 (7
we obtain the condition

1 |

—> - —In(2- V3 8

5 5 n( v3) (8)
This condition is satisfied for A exceeding the critical value of

Aoi=21n(2+V3)=2.6339 (9)

Noticing that this is the minimum A value producing two additional inflection points
symmetrical to the origin, it can be stated that GHNs for N = 2 have gainful properties
for A of much higher values than A_,;,.

Fig. 3(a) shows activation functions f(x, 2) for the subcritical case A =1 for which
desired inflection points are not yet formed, and the critical case of A =A_,;,. It also
includes two activation functions with three inflection points for A values above A_,;,.
Figs. 3(b) and (c) illustrate examples of functions f'(x, 2) and f"(x, 2), respectively,
produced for the same A values as used in Fig. 3(a).
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Fig. 3. Activation functions and their derivatives for N =2 (a) f{x, 2) (b) f'(x,2) (c) f"(x, 2) (A values are
indicated in the figure).

Combining shifted high-gain functions f,(x) and scaling them properly results in
Table 1 which lists desired inflection points and formulas for the activation functions
flx, N) for N=1,...,5. Note that the inflection points listed are those involved in
horizontal shifting of each f,(x).

To summarize, the general formulae for the inflection points, 8,, and corresponding
activation functions for an arbitrary value of N is

1 i1
;= —+2———1, fori=1,2,...,N (10)
N N
2 N
fx, Ny =S LA(x+6) -1 (11)

i=1

Figs. 1(b), (c), and (d) illustrate examples of the activation functions f(x, N) of
multilevel neurons for N = 2, 3 and 5. It is assumed and valid for further considerations
that the steepness coefficient, A, is large enough for the inflection points of the functions
f(x, N) as in (11) to exist at these locations as specified by (10). The actual value of the
x-coordinates of the inflection points beyond the origin slightly differ from those stated
in the table when A takes finite values. When A — x, however, these location
assymptotically approach the ones listed in the table or specified by (11).

Table 1
Desired inflection points and activation functions of GHN neurons
N Selected Ax, N)
inflection points
1 0 2ADf(x)-1
2 -5.3 26X fi(x— D+ filx+5)—1
3 -10% 25X f(x =D+ 0+ flx+3)-1
4 T TR % NS = D+ [l =D+ flx+ D+ [+ -1
5 ~5 5053 26X £ x =D+ [ = D+ LI+ flx + D+ flx+ 5D ]
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3. Generalized Hopfield networks

It is further assumed that GHNs are networks with weight matrices which fulfill the
original assumptions of Hopfield networks, ie. their weight matrices are symmetrical and
contain zeroes on the diagonal [1,2]. Such neural networks have no self-feedback, so
they are ‘almost’ fully connected feedback networks. Their recurrent operation during
the recall phase can be analyzed either in discrete-time or continuous-time mode [3].

It should be noted that under these assumptions for the activation functions of
multilevel neurons, the GHNss still obey the energy minimization property. This is due to
the fact that the monotonicity of f(x, N) is preserved for any N value. GHNs are
therefore absolutely stable as are the original Hopfield networks. Obviously, the
condition of stability requires nullification of the diagonal of the weight matrix as well
as its symmetry. However, much richer dynamic behaviour is expected for the GHNs
due to the expansion of the state space beyond binary values which apply for a standard
activation function case [4-6]. In this perspective, Hopfield networks can be considered
as a sub-class of GHNSs, in the entailing N = 1 case only.

4. Equilibrium points of GHN with two neurons

This section focuses on the discussion of equilibrium points which occur in GHNs.
There are 2" vertices of the hypercube in the state space of a discrete-time Hopfield
network employing n two-state binary neurons (N = 1). The same architecture with
ternary hard-limiting neurons described with f(x, 2) in (11) for A = e, would possess
3" stable states. Our focus is on continuous-time behavior of GHNs. In order to
succinctly capture the underlying principles of GHN, the discussion below is limited to a
bi-stable flip-flop architecture with the bi-stable neurons replaced by multilevel comput-
ing elements such that N > 1.

Consider a bi-stable flip-flop as shown in Fig. 4. Its weight matrix is [7]

w:[? (1)] (12)

The dynamics of the network can be explained by inspection of Fig. 5 showing both
the activation function f(x, N) for N =1, and the line v = x. Although the network of

Fig. 4. Conventional two-neuron Hopfield network behaving as a bi-stable flip-flop.
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Fig. 5. Discussion of equilibrium points for bi-stable flip-flop (case N = 1).

Fig. 5 is static, its time-domain behavior can be illustrated by considering the following
recurrences (superscripts refer to time step numbers). The initial input value to the
neuron 1, x{" < x,,,, produces output v{". Since w,, = 1, v{" now becomes x4" and it
produces a response of the second neuron equal to v$". This transfers, through weight
w), = 1 to the input of the first neuron as x{? and the recursive update restarts. It can be
seen that this recursive computing continues until it ends at a point M1(x,,,, v,,,). It is
similarly easy to verify that recursions originating at x{" > x,,, also terminate at M1. It
can thus be concluded that M1 is a stable equilibrium point of this configuration.

Although this discussion does not capture the detailed network dynamics vs. time
since dynamical components (capacitors) are removed from consideration, it provides
insight into the type of convergence exhibited by the actual network. To bridge the
recursive update scheme discussed above with the performance of an actual network it
might be helpful to cut the connection of the network in Fig. 4 at point C and to analyze
the impact of an open feedback loop connection. It can now be seen that the input xi" is
mapped into the output v{" in an open-loop configuration. Since the loop is actualty
closed and C represents only a fictitious cut, v$" enforces identical input to the neuron
1, ie. v§"=x{¥ due to the existing connection. The recursion then restarts and it
continues until point M1 is reached. A similar discussion leads to the conclusion that
M?2 in the third quadrant is another stable point of this network.

Relating these properties to the stability theorems of nonlinear systems has been
shown in [1] and [2] that both M1 and M2 are minima of the Lyapunov function called
the computational energy function, E(v,, v,). It can also be noticed that the origin, O, is
an unstable equilibrium point which cannot be reached through recursions from any
starting point. This point corresponds to the saddle point of the energy function.
Although the gradient vector of the energy function E(v,, v,) vanishes at point O, the
weight matrix is indefinite there, thus yielding a saddle point of an energy landscape at
the origin [8]. In summary, there exists one saddle point and two minima for an energy
function describing the network from Fig. 4 with conventional bi-stable neurons.

Let us discuss the type of equilibrium points occurring for N > 1. Fig. 6 depicts an
example of the activation function of a GHN neuron for N = 4 and the line v = x for the
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Fig. 6. Illustration to discussion of equilibrium points for N > 1 (Case N = 4).

network configuration as shown in Fig. 4, but now using neurons with 5 levels. The
network possesses the following properties: Moving from the top right of the figure a
triplet of points {1, 2, 3} can be identified as identical in character to the one shown in
Fig. 5. Points 1 and 3 are thus stable minima, and 2 is an unstable saddle point. Triplets
{3, 4, 5}, {5, 6, 7}, and {7, 8, 9} can be characterized similarly with each first and third
member of the set being two stable points which are minima, and the middle member
being an unstable saddle. It can therefore be concluded that the closed-loop network has
5 distinct stable minima and 4 unstable saddle points.

In general, it can be stated that if a network configured as shown in Fig. 4 consists of
neurons whose activation functions have N inflection points at which the slope of the
function f(x, N) is high enough, then the network energy function has N saddle points
and N + 1 minima. Further, note that the minimum is always to the rightmost position
and minima intertwine (or alternate) with saddles. Inflection points of the activation
function, such as even-numbered points of Fig. 6, correspond to the saddle locations of
the network’s energy function.

5. Critical parameter values

In further discussion we utilize the energy function to gain better insight into the
dynamic behaviour of the network. The energy function for the two-neuron GHN
flip-flop is defined as [7]

1 2 v,

E(v) = —Sv'Wy+ Y6, [ FH(z N)dz (13)
i=1 0

Using the weight matrix containing two identical weights w, = w,, = w, the gradient

vector of the energy function is equal to

—wv, + G, f '(v,, N)

VE(v) = —wu, +G,f '(v,, N)

(14)

In order to evaluate minima and saddles of the energy function, conditions at
stationary points being solutions of the equation VE(v) = 0 need to be analyzed using
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Table 2

Critical values of A for various N

N 2 3 4 5 6 7

Aerir 2.6339 4.3634 5.8329 7.2921 8.7506 10.2090

the Hessian matrix determinant for this case. Since d[f '(w)]/du=1/f'(u), the
Hessian of E(v) is

G,
af(vy, N) -
av,
HE(V]= G, (15)
" 3f(v,. N)
dv, |

In order for the GHNs to possess the desired number of minima certain critical
parameter values should exist. As indicated in Section 2, function f(x, N) should have
2N -1 inflection points at which f"(x, N)=0. We have introduced A, as the
smallest value of the steepness factor, A, for which all required inflection points exist.
Table 2 lists critical values of A for N=2, 3,...,7. For N> 2 the values have been
calculated numerically.

Another set of conditions ensuring appropriate functioning of the GHN from Fig. 4 is
related to the existence of the appropriate number of minima and saddles of the energy
functions. These conditions relate A values with other network coefficients involved in
expression (13), namely G and w values. They are evaluated below for various N when
the Hessian expression can still be handled analytically.

The conditions for existence of stationary points depend on the determinant of the
Hessian of E. For a saddle point of E to exist the determinant must be less than zero.
For a minimum of E the determinant must be greater than zero and the second partial
derivative with respect to v greater than zero. For N =1 the gradient (14) equals

1 1+
—wu, + ij\—ln

11—y,
VE(v) = I 1+o, (16)
—wo, +Gz;‘—ln

— v,

where f~'(v) =(1/A) In(1 + v) /(1 — v) is the inverse of the activation function f(x, 1)
= 2f,(x) — 1. The Hessian matrix of E now becomes

26,
R Y
E(v) — 2G2 (17)
- W

AM1=0)(1 +vy)
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M w/G=1.0

M w/G=0.5
L

Fig. 7. Graphical interpretation of conditions for A for which saddles of E(v) exist (case N = 2).

By analyzing the existence condition of the saddle at the origin it can be shown that for
N=1det H<O0 for Aw/G > 2. For N =2, saddle points of E(v,, v,) exist at v, = v,
=105 as A— o, and a single minimum exists at the origin. For this case the
following constraints must be met

4(1+e"")2 Aw (l+e*/2)2

_ 18
1 +6e*+e 2 G 2er/? (18)

The boundaries of (18) can be interpreted graphically as functions as shown in Fig. 7.
The figure shows the upper (R) and lower (L) bounds for the value of Aw/G. From the
figure the absolute minimum for the existence of saddles is 3.0571 (point A). For

Table 3

Values of Ag,,;, and coordinates of saddles, in E(v) for N=1,2,...,7

N Afcris v at saddle N Agcris v at saddle

1 2.0000 0.000 6 6.4909 0.153

2 3.5764 0.428 7.7435 0.479

3 3.6754 0.000 10.6588 0.807
5.3305 0.615 7 6.8821 0.000

4 5.2066 0.224 7.5108 0.271
7.1059 0.711 9.0336 0.554

5 7.6570 0.000 12.4353 0.835
6.4571 0.376

8.8823 0.769
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w/G = 1, the minimum value of A is 3.5764 (point B). Realising that the boundaries
(18) must be satisfied, applicable constraints can be found for A given the w/G value.
Comparing conditions on the existence of the inflection points with those discussed in
Section 2 for case N =2 it can be seen that A > A_,, =2.6339 from Table 2 is a
necessary condition. The existence of the saddles for N = 2 requires A > 3.5764, which
can be considered as a sufficient condition. Numerical analysis of sufficient conditions
for A and N> 2 has been carried out with regard to the lowest values of A for the
existence of all saddle points of the energy function at all inflection points. These values
are called Ag,;,. The results are summarized in Table 3 which also list saddle point
coordinates for v >0 with A=A

Ecrir

6. Evaluation of energy landscapes and basins of attraction

The energy function analysis throughout this paper has provided the insight into the
stability and dynamics of the 2-neuron GHNs. This section focuses on visualization of
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Fig. 8. Energy functions for different conditions (a) surface N=1, A=1 (b) contour map N=1, A=1 (c)
surface N=1, A= 15 (d) contour map N=1, A= 5.
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(d)

(b)

Fig. 12. Basins of attraction for various N values (@) N=1(b) N=2() N=3(d) N=4.

the energy surfaces, on discussion of relevant gradient fields, and networks’ basins of
attraction for different computational conditions. To qualitatively illustrate the behaviour
of GHNs and their stability properties for graphs in this section assume the condition
G=w= 1.

Figs. 8(a) and (b) show the energy landscape and the respective contour map for a
subcritical case A =1 when N = 1. Due to a low A value no saddle point has developed
which would separate two minima for this potentially bi-stable configuration. For
A=5> Ag,; the bi-stability property can easily be seen from Figs. 8(c) and (d).

Fig. 9 provides the energy function along with its contour map for N = 2, A = 5. The
energy function exhibits three distinct minima and two saddle points. Fig. 10(a)
illustrates the energy function for N =3, A =40. There are 3 saddle points and 4
minima for this high-gain case. Fig. 11 depicts the case of N =4 for three distinct
values of A. Subcritical, too low value of A (A =5 in this case) leads to the absence of
desired stationary points as shown in Fig. 11(a). Such points have been able to develop
for the network with A =20, as shown in Fig. 11(b). A much more ‘crispy’ energy
landscape is produced in Fig. 11(c) for A =90. Although minima of E(v) are still
attractive in the two latter cases in a similar way, stationary points are now easier to
distinguish.

Fig. 10(b) shows the vector fields of a high-gain GHN for N = 3. Arrows pointing in
directions of system transients are indicative of the directions of the slope of the energy
function [3,9]. Basins of attraction are also distinguishable from this figure for the
discussed network.

In the case of a symmetrical weight matrix and G, = G,, basins of attraction can be
sketched as in Fig. 12. It can be seen that the basins are symmetrical with respect to the
diagonal v, = v, and bordered by straight lines containing the saddle points and having
a slope of —1. It can be seen that odd numbered attractors on the figure will be the
endpoints of any trajectory originating in a given region.

7. Image restoration application

Multilevel neurons have recently been applied successfully for the solution of a
number of optimization problems [10,11]. In addition, their electronic implementation
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[6,10,11] makes them attractive candidates for use in multilevel associative memories.
Multilevel neurons’ applications have also been reported in an optoelectronic implemen-
tation and applied to the smoothing of an image [12]. An experiment reported below
shows the potential for GHNs for multilevel image noise removal.

A network shown in Fig. 4, with N =7 was used for an image smoothing experi-
ment. This network has eight stable states, namely (—1, — 1), (= 3, — 2), (= 2, — 2),
(=1, =D, G D, @3, D, &, 2, and (1, 1). The eight grey levels of a 250 X 200
image are mapped linearly onto the range [— 1, 1]. Random noise values in the range
[- %, 7'] are now added to the mapped pixel values to produce a distorted image, giving
the resulting image with noise superimposed in Fig. 13(a).

In order to verify the image smoothing performance of the network both v, and v,
are initialized identical with the value of a distorted pixel and the network has been
allowed to converge. The resulting (v,, v,) pair was then mapped onto a scalar value by
taking their average. The images obtained for A = 3, 5 and 50 are shown in Fig. 13(b),
(c) and (d). Both A=3 and A =35 are subcritical since Ag,,;, = 12.4353 for N=17.
These effects can be seen in the inaccurate smoothing of the image with very inaccurate
smoothing for A = 3, as expected. For A = 50> A it can be seen that the smoothing
is perfect.

Ecrit

8. Conclusions

A qualitative analysis of the class of generalized Hopfield networks has demonstrated
the existence of very useful dynamical neural network models. The proposed network
requires a minimal number of weights and its processing power lies in the neuron’s
activation function. Due to the special nonlinearity of the network’s characteristics,
multiple local minima intertwined with saddles exist in the energy functions of a
generalized bi-stable flip-flop configuration. Conditions for the existence of such
minima and saddles have been developed. Dynamical properties have also been formu-
lated in terms of the network energy function and discussed in terms of the gradient
vector fields and basins of attraction. While the qualitative importance of these networks
is in the sense that they generalize the bistable Hopfield networks, they are also of
fundamental importance in many applications of dynamical neural systems as useful

() ’ (d)

Fig. 13. (a) Noisy image and Resultant images from the image smoothing experiment (b) A= 3 (¢) A=15 (d)
A= 50.
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computational devices. The applicability of the proposed network is demonstrated by
means of a grey level image restoration example where each neuron assumes one of
eight values. The proposed network behaves as a multistable memory cell and has
tremendous potential as an information storage element in which a multiplicity of logic
levels can be stored. Other applications may include multilevel associative memories
and multivalued logic processors.
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